Strategies to therapeutically modulate cytokine action

Abstract

Cytokines are secreted or membrane-presented molecules that mediate broad cellular functions, including development, differentiation, growth and survival. Accordingly, the regulation of cytokine activity is extraordinarily important both physiologically and pathologically. Cytokine and/or cytokine receptor engineering is being widely investigated to safely and effectively modulate cytokine activity for therapeutic benefit. IL-2 in particular has been extensively engineered, to create IL-2 variants that differentially exhibit activities on regulatory T cells to potentially treat autoimmune disease versus effector T cells to augment antitumour effects. Additionally, engineering approaches are being applied to many other cytokines such as IL-10, interferons and IL-1 family cytokines, given their immunosuppressive and/or antiviral and anticancer effects. In modulating the actions of cytokines, the strategies used have been broad, including altering affinities of cytokines for their receptors, prolonging cytokine half-lives in vivo and fine-tuning cytokine actions. The field is rapidly expanding, with extensive efforts to create improved therapeutics for a range of diseases.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Learn more

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytokine receptors and γc-family cytokines.
Fig. 2: Heterodimerization of the IL-2Rβ and γc cytoplasmic domains is crucial for signalling.
Fig. 3: Mechanisms of cytokine signalling, using IL-2 as a representative cytokine.
Fig. 4: Different approaches to triggering IL-2 signalling: antibodies, single-chain reagents and orthogonal cytokines.
Fig. 5: Super-IL-2 and partial agonists.

References

  1. Cohen, S., Bigazzi, P. E. & Yoshida, T. Commentary. Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol. 12, 150–159 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  2. Keegan, A. D. & Leonard, W. J. in Paul’s Fundamental Immunology 8th edn, ch. 9 (eds Flajnik, M. F., Singh, N. J. & Holland, S. M.) 258–307 (Wolters Kluwer, 2023).

  3. Isaacs, A. & Lindenmann, J. The interferon. Proc. R. Soc. Lond. B Biol. Sci. 147, 258–267 (1957).

    CAS 
    PubMed 

    Google Scholar 

  4. Decker, T., Muller, M. & Stockinger, S. The Yin and Yang of type I interferon activity in bacterial infection. Nat. Rev. Immunol. 5, 675–687 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  5. Wheelock, E. F. Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 149, 310–311 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  6. Billiau, A. & Matthys, P. Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev. 20, 97–113 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  7. Chen, J. et al. Induction of the IL-9 gene by HTLV-I Tax stimulates the spontaneous proliferation of primary adult T-cell leukemia cells by a paracrine mechanism. Blood 111, 5163–5172 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  8. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Levine, R. L. et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7, 387–397 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  11. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  12. Hernandez, R., Poder, J., LaPorte, K. M. & Malek, T. R. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat. Rev. Immunol. 22, 614–628 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  13. Holder, P. G. et al. Engineering interferons and interleukins for cancer immunotherapy. Adv. Drug Deliv. Rev. 182, 114112 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  14. Saxton, R. A., Glassman, C. R. & Garcia, K. C. Emerging principles of cytokine pharmacology and therapeutics. Nat. Rev. Drug Discov. 22, 21–37 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  15. Raeber, M. E., Sahin, D. & Boyman, O. Interleukin-2-based therapies in cancer. Sci. Transl. Med. 14, eabo5409 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  16. Propper, D. J. & Balkwill, F. R. Harnessing cytokines and chemokines for cancer therapy. Nat. Rev. Clin. Oncol. 19, 237–253 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  17. Wlodawer, A., Pavlovsky, A. & Gustchina, A. Hematopoietic cytokines: similarities and differences in the structures, with implications for receptor binding. Protein Sci. 2, 1373–1382 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  18. Goel, R. R., Kotenko, S. V. & Kaplan, M. J. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat. Rev. Rheumatol. 17, 349–362 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Dinarello, C. A. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat. Rev. Rheumatol. 15, 612–632 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  20. Nold, M. F. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat. Immunol. 11, 1014–1022 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  21. Nold-Petry, C. A. et al. IL-37 requires the receptors IL-18Ralpha and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat. Immunol. 16, 354–365 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  22. van de Veerdonk, F. L. et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl Acad. Sci. USA 109, 3001–3005 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Mora, J. et al. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses. J. Mol. Cell Biol. 8, 426–438 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  24. de Graaf, D. M., Teufel, L. U., Joosten, L. A. B. & Dinarello, C. A. Interleukin-38 in health and disease. Cytokine 152, 155824 (2022).

    Article 
    PubMed 

    Google Scholar 

  25. Majumder, S. & McGeachy, M. J. IL-17 in the pathogenesis of disease: good intentions gone awry. Annu. Rev. Immunol. 39, 537–556 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Mills, K. H. G. IL-17 and IL-17-producing cells in protection versus pathology. Nat. Rev. Immunol. 23, 38–54 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Wilson, S. C. et al. Organizing structural principles of the IL-17 ligand-receptor axis. Nature 609, 622–629 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  28. Murray-Rust, J. et al. Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. Structure 1, 153–159 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  29. Monin, L. & Gaffen, S. L. Interleukin 17 family cytokines: signaling mechanisms, biological activities, and therapeutic implications. Cold Spring Harb. Perspect. Biol. 10, a028522 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  30. Wallach, D. The tumor necrosis factor family: family conventions and private idiosyncrasies. Cold Spring Harb. Perspect. Biol. 10, a028431 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  31. de Vos, A. M., Ultsch, M. & Kossiakoff, A. A. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312 (1992). Provides the structure of a type I cytokine–type I cytokine receptor complex, revealing receptor homodimerization for the growth hormone system.

    Article 
    PubMed 

    Google Scholar 

  32. Bazan, J. F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl Acad. Sci. USA 87, 6934–6938 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  33. Wang, X., Lupardus, P., Laporte, S. L. & Garcia, K. C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29–60 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Spolski, R., Gromer, D. & Leonard, W. J. The gamma c family of cytokines: fine-tuning signals from IL-2 and IL-21 in the regulation of the immune response. F1000Res 6, 1872 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Lin, J. X. & Leonard, W. J. The common cytokine receptor gamma chain family of cytokines. Cold Spring Harb. Perspect. Biol. 10, a028449 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  36. Spolski, R., Li, P. & Leonard, W. J. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat. Rev. Immunol. 18, 648–659 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  37. Leonard, W. J., Lin, J. X. & O’Shea, J. J. The γc family of cytokines: basic biology to therapeutic ramifications. Immunity 50, 832–850 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  38. Rickert, M., Wang, X., Boulanger, M. J., Goriatcheva, N. & Garcia, K. C. The structure of interleukin-2 complexed with its alpha receptor. Science 308, 1477–1480 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  39. Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993). Demonstrates that IL-2Rγ mutations result in X-SCID and predicted the existence of the γc family of cytokines.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  40. Leonard, W. J. The molecular basis of X-linked severe combined immunodeficiency: defective cytokine receptor signaling. Annu. Rev. Med. 47, 229–239 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  41. Fischer, A., Notarangelo, L. D., Neven, B., Cavazzana, M. & Puck, J. M. Severe combined immunodeficiencies and related disorders. Nat. Rev. Dis. Prim. 1, 15061 (2015).

    Article 
    PubMed 

    Google Scholar 

  42. Gonnord, P. et al. A hierarchy of affinities between cytokine receptors and the common gamma chain leads to pathway cross-talk. Sci. Signal. 11, eaal1253 (2018).

    Article 
    PubMed 

    Google Scholar 

  43. Paul, W. E. Pleiotropy and redundancy: T cell-derived lymphokines in the immune response. Cell 57, 521–524 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  44. Ozaki, K. & Leonard, W. J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277, 29355–29358 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  45. Nekoui, A. & Blaise, G. Erythropoietin and nonhematopoietic effects. Am. J. Med. Sci. 353, 76–81 (2017).

    Article 
    PubMed 

    Google Scholar 

  46. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl Acad. Sci. USA 101, 3880–3885 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  47. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Liao, W., Lin, J. X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  49. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  50. Liao, W. et al. Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc. Natl Acad. Sci. USA 111, 3508–3513 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  51. Klatzmann, D. & Abbas, A. K. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat. Rev. Immunol. 15, 283–294 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  52. Abbas, A. K., Trotta, E., Simeonov, D. R., Marson, A. & Bluestone, J. A. Revisiting IL-2: biology and therapeutic prospects. Sci. Immunol. 3, eaat1482 (2018).

    Article 
    PubMed 

    Google Scholar 

  53. Kolios, A. G. A., Tsokos, G. C. & Klatzmann, D. Interleukin-2 and regulatory T cells in rheumatic diseases. Nat. Rev. Rheumatol. 17, 749–766 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  54. Waldmann, T. A., Waldmann, R., Lin, J.-X. & Leonard, W. J. The implications of IL-15 trans-presentation on the immune response. Adv. Immunol. 156, 103–132 (2022).

    Article 
    PubMed 

    Google Scholar 

  55. Puel, A., Ziegler, S. F., Buckley, R. H. & Leonard, W. J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  56. Keegan, A. D., Leonard, W. J. & Zhu, J. Recent advances in understanding the role of IL-4 signaling. Fac. Rev. 10, 71 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  57. Hara, T. & Miyajima, A. Two distinct functional high affinity receptors for mouse interleukin-3 (IL-3). EMBO J. 11, 1875–1884 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  58. Nakamura, Y. et al. Heterodimerization of the IL-2 receptor β- and γ-chain cytoplasmic domains is required for signalling. Nature 369, 330–333 (1994). With ref. 59, one of two papers demonstrating that IL-2 signalling requires the dimerization of the IL-2Rβ and γc cytoplasmic domains. Such dimerization has informed strategies related to IL-2 therapy.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  59. Nelson, B. H., Lord, J. D. & Greenberg, P. D. Cytoplasmic domains of the interleukin-2 receptor β and γchains mediate the signal for T-cell proliferation. Nature 369, 333–336 (1994). With ref. 58, one of two papers demonstrating that IL-2 signalling requires the dimerization of the IL-2Rβ and γc cytoplasmic domains. Such dimerization has informed strategies related to IL-2 therapy.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  60. Leonard, W. J. & O’Shea, J. J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  61. Moraga, I. et al. Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. eLife 6, e22882 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  62. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  63. Russell, S. M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995). Predicts that JAK3 inhibitors would be immunosuppressive, helping to launch the field of development of JAK inhibitors.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  64. Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  65. Li, Z., Rotival, M., Patin, E., Michel, F. & Pellegrini, S. Two common disease-associated TYK2 variants impact exon splicing and TYK2 dosage. PLoS ONE 15, e0225289 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  66. Migone, T. S. et al. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269, 79–81 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  67. Danial, N. N., Pernis, A. & Rothman, P. B. Jak-STAT signaling induced by the v-abl oncogene. Science 269, 1875–1877 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  68. Levine, R. L. & Gilliland, D. G. JAK-2 mutations and their relevance to myeloproliferative disease. Curr. Opin. Hematol. 14, 43–47 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  69. Sathyanarayana, B. K., Li, P., Lin, J. X., Leonard, W. J. & Lee, B. Molecular models of STAT5A tetramers complexed to DNA predict relative genome-wide frequencies of the spacing between the two dimer binding motifs of the tetramer binding sites. PLoS ONE 11, e0160339 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  70. Begitt, A. et al. STAT1-cooperative DNA binding distinguishes type 1 from type 2 interferon signaling. Nat. Immunol. 15, 168–176 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  71. Lin, J. X. et al. Critical role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36, 586–599 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  72. Lin, J. X. et al. Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells. Nat. Commun. 8, 1320 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  73. Monaghan, K. L. et al. Tetramerization of STAT5 promotes autoimmune-mediated neuroinflammation. Proc. Natl Acad. Sci. USA 118, e2116256118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Friedmann, M. C., Migone, T. S., Russell, S. M. & Leonard, W. J. Different interleukin 2 receptor beta-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc. Natl Acad. Sci. USA 93, 2077–2082 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  75. Lin, J. X. et al. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2, 331–339 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  76. Zeng, R. et al. The molecular basis of IL-21–mediated proliferation. Blood 109, 4135–4142 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  77. Migone, T. S. et al. Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol. Cell Biol. 18, 6416–6422 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  78. Wan, C. K. et al. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells. Immunity 38, 514–527 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  79. Wen, Z., Zhong, Z. & Darnell, J. E. Jr. Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell 82, 241–250 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  80. Wen, Z. & Darnell, J. E. Jr. Mapping of Stat3 serine phosphorylation to a single residue (727) and evidence that serine phosphorylation has no influence on DNA binding of Stat1 and Stat3. Nucleic Acids Res. 25, 2062–2067 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  81. Cheon, H. & Stark, G. R. Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proc. Natl Acad. Sci. USA 106, 9373–9378 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  82. Yang, J. et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res. 65, 939–947 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  83. Yang, J. & Stark, G. R. Roles of unphosphorylated STATs in signaling. Cell Res. 18, 443–451 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  84. Hu, X. et al. Unphosphorylated STAT5A stabilizes heterochromatin and suppresses tumor growth. Proc. Natl Acad. Sci. USA 110, 10213–10218 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  85. Gough, D. J. et al. Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  86. Meier, J. A. & Larner, A. C. Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. 26, 20–28 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  87. Gadina, M. et al. Signaling by type I and II cytokine receptors: ten years after. Curr. Opin. Immunol. 13, 363–373 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  88. Shuai, K. & Liu, B. Regulation of gene-activation pathways by PIAS proteins in the immune system. Nat. Rev. Immunol. 5, 593–605 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  89. Kim, H. P., Imbert, J. & Leonard, W. J. Both integrated and differential regulation of components of the IL-2/IL-2 receptor system. Cytokine Growth Factor Rev. 17, 349–366 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  90. Heeb, L. E. M. & Boyman, O. Comprehensive analysis of human IL-4 receptor subunits shows compartmentalization in steady state and dupilumab treatment. Allergy 78, 1073–1087 (2022).

    Article 
    PubMed 

    Google Scholar 

  91. Pandey, A. et al. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 1, 59–64 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  92. Park, L. S. et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: formation of a functional heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659–670 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Ebina-Shibuya, R. & Leonard, W. J. Role of thymic stromal lymphopoietin in allergy and beyond. Nat. Rev. Immunol. 23, 24–37 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  94. Rodeghiero, F. & Carli, G. Beyond immune thrombocytopenia: the evolving role of thrombopoietin receptor agonists. Ann. Hematol. 96, 1421–1434 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  95. Kinch, M. S. An overview of FDA-approved biologics medicines. Drug Discov. Today 20, 393–398 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  96. Kieseier, B. C. The mechanism of action of interferon-beta in relapsing multiple sclerosis. CNS Drugs 25, 491–502 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  97. Todd, P. A. & Goa, K. L. Interferon gamma-1b. A review of its pharmacology and therapeutic potential in chronic granulomatous disease. Drugs 43, 111–122 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  98. Liao, W., Lin, J. X. & Leonard, W. J. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 38, 13–25 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  99. Rosenberg, S. A., Mule, J. J., Spiess, P. J., Reichert, C. M. & Schwarz, S. L. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J. Exp. Med. 161, 1169–1188 (1985). Provides evidence that IL-2 in animal studies had translational potential as an antitumour therapeutic, with later approval by the FDA for metastatic melanoma and renal cell carcinoma.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  100. Rosenberg, S. A. IL-2: the first effective immunotherapy for human cancer. J. Immunol. 192, 5451–5458 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  101. Malek, T. R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  102. Waldmann, T. A., Dubois, S., Miljkovic, M. D. & Conlon, K. C. IL-15 in the combination immunotherapy of cancer. Front. Immunol. 11, 868 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  103. Hinrichs, C. S. et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 111, 5326–5333 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  104. Zeng, R. et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J. Exp. Med. 201, 139–148 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  105. Harvill, E. T. & Morrison, S. L. An IgG3-IL2 fusion protein activates complement, binds Fc gamma RI, generates LAK activity and shows enhanced binding to the high affinity IL-2R. Immunotechnology 1, 95–105 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  106. Yao, Z., Dai, W., Perry, J., Brechbiel, M. W. & Sung, C. Effect of albumin fusion on the biodistribution of interleukin-2. Cancer Immunol. Immunother. 53, 404–410 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  107. Glassman, C. R. et al. Calibration of cell-intrinsic interleukin-2 response thresholds guides design of a regulatory T cell biased agonist. eLife 10, e65777 (2021). Describes an IL-2 partial agonist that favours Treg cell expansion.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  108. Mo, F. et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 597, 544–548 (2021). Describes an IL-2 partial agonist that promotes a CD8+ T stem cell-like phenotype in vitro.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  109. Ishihara, A. et al. Prolonged residence of an albumin-IL-4 fusion protein in secondary lymphoid organs ameliorates experimental autoimmune encephalomyelitis. Nat. Biomed. Eng. 5, 387–398 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  110. Goodson, R. J. & Katre, N. V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8, 343–346 (1990).

    CAS 
    PubMed 

    Google Scholar 

  111. Katre, N. V. Immunogenicity of recombinant IL-2 modified by covalent attachment of polyethylene glycol. J. Immunol. 144, 209–213 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  112. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  113. Sharma, M. et al. Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat. Commun. 11, 661 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  114. Parisi, G. et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat. Commun. 11, 660 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  115. Dolgin, E. IL-2 upgrades show promise at ASCO. Nat. Biotechnol. 40, 986–988 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  116. Zhang, B. et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat. Biomed. Eng. 5, 1288–1305 (2021).

    Article 
    PubMed 

    Google Scholar 

  117. Dixit, N. et al. NKTR-358: a novel regulatory T-cell stimulator that selectively stimulates expansion and suppressive function of regulatory T cells for the treatment of autoimmune and inflammatory diseases. J. Transl. Autoimmun. 4, 100103 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  118. Pires, I. S., Hammond, P. T. & Irvine, D. J. Engineering strategies for immunomodulatory cytokine therapies – challenges and clinical progress. Adv. Ther. 4, 100035 (2021).

    Google Scholar 

  119. Nirschl, C. J. et al. Discovery of a conditionally activated IL-2 that promotes antitumor immunity and induces tumor regression. Cancer Immunol. Res. 10, 581–596 (2022). Describes an IL-2 pro-drug that is activated by protease cleavage in the TME.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  120. Nirschl, C. J. et al. mWTX-330, an IL 12 INDUKINE molecule, activates and reshapes tumor-infiltrating CD8+ T and NK cells to generate antitumor immunity. Cancer Immunol. Res. https://doi.org/10.1158/2326-6066.CIR-22-0705 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  121. Agarwal, Y. et al. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat. Biomed. Eng. 6, 129–143 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  122. Chiocca, E. A. et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci. Transl. Med. 11, eaaw5680 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  123. Boyman, O., Kovar, M., Rubinstein, M. P., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006). A study using distinctive anti-IL-2 antibodies to stimulate intermediate- versus high-affinity IL-2 receptors, and differentially affecting Treg cells and Teff cells.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  124. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  125. Spangler, J. B. et al. Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J. Immunol. 201, 2094–2106 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  126. Trotta, E. et al. A human anti-IL-2 antibody that potentiates regulatory T cells by a structure-based mechanism. Nat. Med. 24, 1005–1014 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  127. Karakus, U. et al. Receptor-gated IL-2 delivery by an anti-human IL-2 antibody activates regulatory T cells in three different species. Sci. Transl. Med. 12, eabb9283 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  128. VanDyke, D. et al. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep. 41, 111478 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  129. Arenas-Ramirez, N. et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci. Transl. Med. 8, 367ra166 (2016).

    Article 
    PubMed 

    Google Scholar 

  130. Sahin, D. et al. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat. Commun. 11, 6440 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  131. De Paula, V. S. et al. Interleukin-2 druggability is modulated by global conformational transitions controlled by a helical capping switch. Proc. Natl Acad. Sci. USA 117, 7183–7192 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  132. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018). Describes the orthogonal IL-2/IL-2 receptor system.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  133. Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  134. Aspuria, P. J. et al. An orthogonal IL-2 and IL-2Rbeta system drives persistence and activation of CAR T cells and clearance of bulky lymphoma. Sci. Transl. Med. 13, eabg7565 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  135. Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rbeta system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl. Med. 13, eabg6986 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  136. Kalbasi, A. et al. Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature 607, 360–365 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  137. Kagoya, Y. et al. A novel chimeric antigen receptor containing a JAK–STAT signaling domain mediates superior antitumor effects. Nat. Med. 24, 352–359 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  138. Collins, L. et al. Identification of specific residues of human interleukin 2 that affect binding to the 70-kDa subunit (p70) of the interleukin 2 receptor. Proc. Natl Acad. Sci. USA 85, 7709–7713 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  139. Sauve, K. et al. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor. Proc. Natl Acad. Sci. USA 88, 4636–4640 (1991). Development of ‘no-α’ muteins of IL-2 that retain biological activity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  140. Zurawski, S. M. et al. Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J. 12, 5113–5119 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  141. Shanafelt, A. B. et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat. Biotechnol. 18, 1197–1202 (2000). Describes an early IL-2 mutein with antitumour activity in animal models.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  142. Carmenate, T. et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J. Immunol. 190, 6230–6238 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  143. Peterson, L. B. et al. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J. Autoimmun. 95, 1–14 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  144. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012). Describes super-IL-2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  145. Junttila, I. S. et al. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat. Chem. Biol. 8, 990–998 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  146. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015). Describes an IL-2/IL-15 antagonist and IL-2 partial agonists.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  147. Strange, P. G. Agonist binding, agonist affinity and agonist efficacy at G protein-coupled receptors. Br. J. Pharmacol. 153, 1353–1363 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  148. Stauber, D. J., Debler, E. W., Horton, P. A., Smith, K. A. & Wilson, I. A. Crystal structure of the IL-2 signaling complex: paradigm for a heterotrimeric cytokine receptor. Proc. Natl Acad. Sci. USA 103, 2788–2793 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  149. Buchli, P. & Ciardelli, T. Structural and biologic properties of a human aspartic acid-126 interleukin-2 analog. Arch. Biochem. Biophys. 307, 411–415 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  150. Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8+ T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  151. Peng, M. et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science 354, 481–484 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  152. Carmenate, T. et al. Blocking IL-2 signal in vivo with an IL-2 antagonist reduces tumor growth through the control of regulatory T cells. J. Immunol. 200, 3475–3484 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  153. Gaggero, S. et al. IL-2 is inactivated by the acidic pH environment of tumors enabling engineering of a pH-selective mutein. Sci. Immunol. 7, eade5686 (2022). Describes a pH-selective mutein that is activated in the acidic TME.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  154. Gorby, C. et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 13, eabc0653 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  155. Saxton, R. A. et al. Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10. Science 371, eabc8433 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  156. Glassman, C. R. et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 184, 983–999 e924 (2021). Describes an approach for fine-tuning the signals of IL-12 and IL-23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  157. Mendoza, J. L. et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature 567, 56–60 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  158. Saxton, R. A. et al. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 54, 660–672 e669 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  159. Rose-John, S., Winthrop, K. & Calabrese, L. The role of IL-6 in host defence against infections: immunobiology and clinical implications. Nat. Rev. Rheumatol. 13, 399–409 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  160. Teng, M. W. et al. IL-12 and IL-23 cytokines: from discovery to targeted therapies for immune-mediated inflammatory diseases. Nat. Med. 21, 719–729 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  161. Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537–547 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  162. Wuest, S. C. et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat. Med. 17, 604–609 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  163. Rubinstein, M. P. et al. Converting IL-15 to a superagonist by binding to soluble IL-15Rα. Proc. Natl Acad. Sci. USA 103, 9166–9171 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  164. Mortier, E. et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem. 281, 1612–1619 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  165. Desbois, M. et al. IL-15 trans-signaling with the superagonist RLI promotes effector/memory CD8+ T cell responses and enhances antitumor activity of PD-1 antagonists. J. Immunol. 197, 168–178 (2016). Describes a covalently linked IL-15–IL-15Rα super-agonist.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  166. Meghnem, D. et al. Cutting edge: differential fine-tuning of IL-2- and IL-15-dependent functions by targeting their common IL-2/15Rβ/γc receptor. J. Immunol. 198, 4563–4568 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  167. Burrack, K. S. et al. Interleukin-15 complex treatment protects mice from cerebral malaria by inducing interleukin-10-producing natural kαiller cells. Immunity 48, 760–772 e764 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  168. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018). Describes ALT-803 (also known as N-803), an IL-15 super-agonist comprising IL-15(N72D) fused to dimeric IL-15Rα–IgG Fc.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  169. Seymour, C. FDA accepts BLA for N-803 in BCG-unresponsive non–muscle invasive bladder cancer in situ. Oncology Live Urologists in Cancer Care https://www.onclive.com/view/fda-accepts-bla-for-n-803-in-bcg-unresponsive-non-muscle-invasive-bladder-cancer-in-situ (1 August 2022).

  170. Conroy, R. FDA declines N-803 combo approval in non-muscle invasive bladder cancer. Cancer Network https://www.cancernetwork.com/view/fda-declines-n-803-combo-approval-in-non-muscle-invasive-bladder-cancer (11 May 2023).

  171. Rubinstein, M. P. et al. Phase I trial characterizing the pharmacokinetic profile of N-803, a chimeric IL-15 superagonist, in healthy volunteers. J. Immunol. 208, 1362–1370 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  172. Lowenthal, J. W. & Greene, W. C. Contrasting interleukin 2 binding properties of the alpha (p55) and beta (p70) protein subunits of the human high-affinity interleukin 2 receptor. J. Exp. Med. 166, 1156–1161 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  173. Lopes, J. E. et al. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J. Immunother. Cancer 8, e00673 (2020).

    Article 

    Google Scholar 

  174. Ward, N. C. et al. Persistent IL-2 receptor signaling by IL-2/CD25 fusion protein controls diabetes in NOD mice by multiple mechanisms. Diabetes 69, 2400–2413 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  175. Hernandez, R. et al. Sustained IL-2R signaling of limited duration by high-dose mIL-2/mCD25 fusion protein amplifies tumor-reactive CD8+ T cells to enhance antitumor immunity. Cancer Immunol. Immunother. 70, 909–921 (2021). Describes a CD25–IL-2 fusion protein that favours formation of a trans-dimer, prolonging half-life; in models of lupus and type 1 diabetes, it favours expansion of Treg cells but at high concentrations, it expands effector and memory T cell responses.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  176. Hernandez, R., LaPorte, K. M., Hsiung, S., Santos Savio, A. & Malek, T. R. High-dose IL-2/CD25 fusion protein amplifies vaccine-induced CD4+ and CD8+ neoantigen-specific T cells to promote antitumor immunity. J. Immunother. Cancer 9, e002865 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  177. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019). Describes the ‘neokine’, NL-201, which is an IL-2/IL-15 mimetic.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  178. Hou, J. et al. Design of a superior cytokine antagonist for topical ophthalmic use. Proc. Natl Acad. Sci. USA 110, 3913–3918 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  179. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020). Development of DR18, a variant of IL-18 that is resistant to inhibition by IL-18BP, an IL-18 decoy receptor.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  180. Padutsch, T. et al. Superior Treg-expanding properties of a novel dual-acting cytokine fusion protein. Front. Pharmacol. 10, 1490 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  181. Findeisen, M. et al. Treatment of type 2 diabetes with the designer cytokine IC7Fc. Nature 574, 63–68 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  182. Heuser, C. et al. Anti-CD30-scFv-Fc-IL-2 antibody-cytokine fusion protein that induces resting NK cells to highly efficient cytolysis of Hodgkin’s lymphoma derived tumour cells. Int. J. Cancer 110, 386–394 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  183. Jahn, T. et al. An IL12-IL2-antibody fusion protein targeting Hodgkin’s lymphoma cells potentiates activation of NK and T cells for an anti-tumor attack. PLoS ONE 7, e44482 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  184. Martomo, S. A. et al. Single-dose anti-PD-L1/IL-15 fusion protein KD033 generates synergistic antitumor immunity with robust tumor-immune gene signatures and memory responses. Mol. Cancer Ther. 20, 347–356 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  185. Quayle, S. N. et al. CUE-101, a novel E7-pHLA-IL2-Fc fusion protein, enhances tumor antigen-specific T-cell activation for the treatment of HPV16-driven malignancies. Clin. Cancer Res. 26, 1953–1964 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  186. West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123, 2604–2615 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  187. Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 610, 173–181 (2022). Demonstrates that IL-2 and PD1 cooperate and that signalling via high-affinity receptors enhances antitumour immunity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  188. Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature 610, 161–172 (2022). Describes the PD1–IL-2v immunokine that maintains stem-like CD8+ cells with enhanced antitumour activity.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  189. Harris, K. E. et al. A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells. Sci. Rep. 11, 10592 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  190. Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430 e1419 (2022). Shows an approach to rapidly discover new cytokine agonists.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  191. Waldmann, T. A. Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene 26, 3699–3703 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  192. Bielekova, B. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc. Natl Acad. Sci. USA 101, 8705–8708 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  193. Tanaka, T., Narazaki, M. & Kishimoto, T. Interleukin (IL-6) Immunotherapy. Cold Spring Harb. Perspect. Biol. 10, a028456 (2017).

    Article 

    Google Scholar 

  194. Narazaki, M. & Kishimoto, T. Current status and prospects of IL-6-targeting therapy. Expert. Rev. Clin. Pharmacol. 15, 575–592 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  195. Huseni, M. A. et al. CD8+ T cell-intrinsic IL-6 signaling promotes resistance to anti-PD-L1 immunotherapy. Cell Rep. Med. 4, 100878 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  196. Shirley, M. Dupilumab: first global approval. Drugs 77, 1115–1121 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  197. van Vollenhoven, R. F. et al. Maintenance of efficacy and safety of ustekinumab through one year in a phase II multicenter, prospective, randomized, double-blind, placebo-controlled crossover trial of patients with active systemic lupus erythematosus. Arthritis Rheumatol. 72, 761–768 (2020).

    Article 
    PubMed 

    Google Scholar 

  198. Hoy, S. M. Tezepelumab: first approval. Drugs 82, 461–468 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  199. Le Floc’h, A. et al. Blocking common gamma chain cytokine signaling ameliorates T cell-mediated pathogenesis in disease models. Sci. Transl. Med. 15, eabo0205 (2023).

    Article 
    PubMed 

    Google Scholar 

  200. Liu, S. et al. A synthetic human antibody antagonizes IL-18Rbeta signaling through an allosteric mechanism. J. Mol. Biol. 432, 1169–1182 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  201. Philips, R. L. et al. The JAK-STAT pathway at 30: much learned, much more to do. Cell 185, 3857–3876 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  202. Rajala, H. L., Porkka, K., Maciejewski, J. P., Loughran, T. P. Jr & Mustjoki, S. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann. Med. 46, 114–122 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  203. Kucuk, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun. 6, 6025 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  204. Forbes, S. A. et al. COSMIC: high-resolution cancer genetics using the catalogue of somatic mutations in cancer. Curr. Protoc. Hum. Genet. https://doi.org/10.1002/cphg.21 (2016).

    Article 
    PubMed 

    Google Scholar 

  205. Miklossy, G., Hilliard, T. S. & Turkson, J. Therapeutic modulators of STAT signalling for human diseases. Nat. Rev. Drug Discov. 12, 611–629 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  206. Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  207. Toniolo, P. A. et al. Inhibiting STAT5 by the BET bromodomain inhibitor JQ1 disrupts human dendritic cell maturation. J. Immunol. 194, 3180–3190 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  208. Elumalai, N. et al. Rational development of Stafib-2: a selective, nanomolar inhibitor of the transcription factor STAT5b. Sci. Rep. 7, 819 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  209. Hu, X., Li, J., Fu, M., Zhao, X. & Wang, W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct. Target. Ther. 6, 402 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  210. Garber, K. The PROTAC gold rush. Nat. Biotechnol. 40, 12–16 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  211. Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511 e417 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  212. Shah, R. R. et al. Hi-JAK-ing the ubiquitin system: the design and physicochemical optimisation of JAK PROTACs. Bioorg. Med. Chem. 28, 115326 (2020). Development of PROTACs.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  213. Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  214. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl. Med. 13, eabc7804 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  215. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  216. Ptacin, J. L. et al. An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  217. Tchao, N. et al. Efavaleukin alfa, a novel IL-2 mutein, selectively expands regulatory T cells in patients with SLE: final results of a phase 1b multiple ascending dose study. Ann. Rheum. Dis. 81, 1343–1344 (2022).

    Article 

    Google Scholar 

  218. Laurent, J. et al. T-cell activation by treatment of cancer patients with EMD 521873 (Selectikine), an IL-2/anti-DNA fusion protein. J. Transl. Med. 11, 5 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  219. Merchant, R. et al. Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate. J. Immunother. Cancer 10, e003155 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  220. Emmerich, J. et al. STK-012, an alpha/beta selective IL-2 mutein for the activation of the antigen-activated T cells in solid tumor. Cancer Res. 81 (Suppl. 13), 1744 (2021).

    Article 

    Google Scholar 

  221. Waldhauer, I. et al. Simlukafusp alfa (FAP-IL2v) immunocytokine is a versatile combination partner for cancer immunotherapy. MAbs 13, 1913791 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  222. Klein, C. et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 6, e1277306 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  223. Fishman, M. N. et al. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin. Cancer Res. 17, 7765–7775 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  224. Moynihan, K. D. et al. AB248 is a CD8+ T cell selective IL-2 designed for superior safety and anti-tumor efficacy [abstract]. Cancer Res. 82 (Suppl. 12), 3518 (2022).

    Article 

    Google Scholar 

  225. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/search?term=NCT04710043 (2023).

  226. DeOca, K. B., Moorman, C. D., Garcia, B. L. & Mannie, M. D. Low-zone IL-2 signaling: fusion proteins containing linked CD25 and IL-2 domains sustain tolerogenic vaccination in vivo and promote dominance of FOXP3+ Tregs in vitro. Front. Immunol. 11, 541619 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  227. McKean, M. et al. A first-in-human, multicenter, phase 1/2 open-label study of XTX202, a masked and tumor-selective recombinant human interleukin-2 (IL-2) protein, in patients with advanced solids tumors [abstract]. J. Clin. Oncol. 40 (Suppl. 16), TPS2697 (2022).

    Article 

    Google Scholar 

  228. Fischer, R. et al. Selective activation of tumor necrosis factor receptor ii induces antiinflammatory responses and alleviates experimental arthritis. Arthritis Rheumatol. 70, 722–735 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  229. Miyazaki, T. et al. NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy. J. Immunother. Cancer 9, e002024 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  230. Zhu, X. et al. Novel human interleukin-15 agonists. J. Immunol. 183, 3598–3607 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  231. Liu, B. et al. A novel fusion of ALT-803 (interleukin (IL)-15 superagonist) with an antibody demonstrates antigen-specific antitumor responses. J. Biol. Chem. 291, 23869–23881 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  232. Conlon, K. et al. Phase I study of single agent NIZ985, a recombinant heterodimeric IL-15 agonist, in adult patients with metastatic or unresectable solid tumors. J. Immunother. Cancer 9, e003388 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  233. Tredan, O. et al. ELYPSE-7: a randomized placebo-controlled phase IIa trial with CYT107 exploring the restoration of CD4+ lymphocyte count in lymphopenic metastatic breast cancer patients. Ann. Oncol. 26, 1353–1362 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  234. Lim, J. Y. et al. Biophysical stability of hyFc fusion protein with regards to buffers and various excipients. Int. J. Biol. Macromol. 86, 622–629 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  235. Sohn, J. et al. Phase 1b/2 study of GX-I7 plus pembrolizumab in patients with refractory or recurrent (R/R) metastatic triple-negative breast cancer (mTNBC): the KEYNOTE-899 study [abstract]. J. Clin. Oncol. 40 (Suppl. 16), 1081–1081 (2022).

    Google Scholar 

  236. Sun, J. C., Lehar, S. M. & Bevan, M. J. Augmented IL-7 signaling during viral infection drives greater expansion of effector T cells but does not enhance memory. J. Immunol. 177, 4458–4463 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  237. Hsieh, J. et al. A GMCSF and IL7 fusion cytokine leads to functional thymic-dependent T-cell regeneration in age-associated immune deficiency. Clin. Transl. Immunol. 4, e37 (2015).

    Article 

    Google Scholar 

  238. Dower, W. et al. MDK1319/MDK-701: a potent fully efficacious peptidyl agonist of IL-7R alpha gamma C, designed with no reference to cytokine or receptor structure and unrelated to IL-7, fused to an FC-domain for PK enhancement. J. Immunother. Cancer 8, A341–A342 (2020).

    Google Scholar 

  239. Friend, R., Baxter, B., Park, I. A., Cwirla, S. & Barrett, R. A phase 1 single ascending dose study evaluating the safety, tolerability, and pharmacodynamic effects of Mdk-703, an Il-7 mimetic with extended half-life. J. Immunother. Cancer 10, A657 (2022).

    Google Scholar 

  240. Song, Y. et al. In vivo antitumor activity of a recombinant IL7/IL15 hybrid cytokine in mice. Mol. Cancer Ther. 15, 2413–2421 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  241. Morello, A. et al. A novel bifunctional anti-PD-1 IL-7 fusion protein to reinvigorate exhausted T cell and disarms Treg suppressive activity [abstract]. Cancer Res. 80 (Suppl. 16), 910 (2020).

    Article 

    Google Scholar 

  242. Shen, S. et al. Engineered IL-21 cytokine muteins fused to anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front. Immunol. 11, 832 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  243. Li, Y. et al. Targeting IL-21 to tumor-reactive T cells enhances memory T cell responses and anti-PD-1 antibody therapy. Nat. Commun. 12, 951 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  244. Bhatt, S. et al. Anti-CD20-interleukin-21 fusokine targets malignant B cells via direct apoptosis and NK-cell-dependent cytotoxicity. Blood 129, 2246–2256 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  245. Sampson, J. H. et al. Targeting the IL4 receptor with MDNA55 in patients with recurrent glioblastoma: results of a phase 2b trial. Neuro Oncol. 25, 1085–1097 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  246. Kim, Y. H. et al. A single-arm phase 2A study of NM-IL-12 (rHu-IL12) in patients with mycosis fungoides-type CTCL (MF) undergoing low-dose total skin electron beam therapy (LD-TSEBT) [abstract]. Blood 128, 4165 (2016).

    Article 

    Google Scholar 

  247. Gutierrez, E. et al. An optimized IL-12-Fc expands its therapeutic window, achieving strong activity against mouse tumors at tolerable drug doses. Med 4, 326–340.e5 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  248. Strauss, J. et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  249. Greiner, J. W., Morillon, Y. M. 2nd & Schlom, J. NHS-IL12, a tumor-targeting immunocytokine. Immunotargets Ther. 10, 155–169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  250. Ongaro, T. et al. A novel anti-cancer L19-interleukin-12 fusion protein with an optimized peptide linker efficiently localizes in vivo at the site of tumors. J. Biotechnol. 291, 17–25 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  251. Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  252. Bazan, J. F. Neuropoietic cytokines in the hematopoietic fold. Neuron 7, 197–208 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  253. Martins, G. A., Cimmino, L., Liao, J., Magnusdottir, E. & Calame, K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J. Exp. Med. 205, 1959–1965 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  254. Tomkowicz, B. et al. TIM-3 suppresses anti-CD3/CD28-induced TCR activation and IL-2 expression through the NFAT signaling pathway. PLoS ONE 10, e0140694 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  255. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  256. Li, P. et al. STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: functional dissection of the Il2ra gene locus. Proc. Natl Acad. Sci. USA 114, 12111–12119 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  257. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  258. Xu, X., Sun, Y. L. & Hoey, T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 273, 794–797 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  259. Vinkemeier, U. et al. DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. EMBO J. 15, 5616–5626 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  260. John, S., Vinkemeier, U., Soldaini, E., Darnell, J. E. Jr. & Leonard, W. J. The significance of tetramerization in promoter recruitment by Stat5. Mol. Cell Biol. 19, 1910–1918 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  261. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  262. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  263. Godfrey, V. L., Wilkinson, J. E. & Russell, L. B. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am. J. Pathol. 138, 1379–1387 (1991).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  264. Blair, P. J. et al. CD4+CD8 T cells are the effector cells in disease pathogenesis in the scurfy (sf) mouse. J. Immunol. 153, 3764–3774 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  265. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  266. Yu, A. et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms supports the use of low-dose IL-2 therapy in type 1 diabetes. Diabetes 64, 2172–2183 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  267. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  268. Mizui, M. & Tsokos, G. C. Targeting regulatory T cells to treat patients with systemic lupus erythematosus. Front. Immunol. 9, 786 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  269. He, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat. Med. 22, 991–993 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  270. He, J. et al. Efficacy and safety of low-dose IL-2 in the treatment of systemic lupus erythematosus: a randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 79, 141–149 (2020). Efficacy of low-dose IL-2 related to systemic lupus erythematosis.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  271. von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1407–1415 (2016).

    Article 

    Google Scholar 

  272. Hartemann, A. et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 1, 295–305 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  273. Rosenzwajg, M. et al. Low-dose interleukin-2 fosters a dose-dependent regulatory T cell tuned milieu in T1D patients. J. Autoimmun. 58, 48–58 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  274. Rosenzwajg, M. et al. Low-dose IL-2 in children with recently diagnosed type 1 diabetes: a phase I/II randomised, double-blind, placebo-controlled, dose-finding study. Diabetologia 63, 1808–1821 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  275. Dong, S. et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes. JCI Insight 6, e147474 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Division of Intramural Research, National Heart, Lung, and Blood Institute, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to
Warren J. Leonard.

Ethics declarations

Competing interests

W.J.L. is an inventor on patents related to IL-2 partial agonists. J.X.L. declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Antibody Society:

Antibody therapeutics approved or in regulatory review in the EU or US

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonard, W.J., Lin, JX. Strategies to therapeutically modulate cytokine action.
Nat Rev Drug Discov (2023). https://doi.org/10.1038/s41573-023-00746-x

Download citation

  • Accepted: 02 June 2023

  • Published: 04 August 2023

  • DOI: https://doi.org/10.1038/s41573-023-00746-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Leave a Reply

Your email address will not be published. Required fields are marked *