Circulating PCSK9 as a prognostic biomarker of cardiovascular events in individuals with type 2 diabetes: evidence from a 16.8-year follow-up study

  • IDF Diabetes Atlas. https://www.diabetesatlas.org.

  • Chen H, Chen G, Zheng X, Guo Y. Contribution of specific diseases and injuries to changes in health adjusted life expectancy in 187 countries from 1990 to 2013: retrospective observational study. BMJ. 2019;364:l969.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregg EW, Sattar N, Ali MK. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016;4(6):537–47.

    Article 
    PubMed 

    Google Scholar 

  • Bancks MP, Ning H, Allen NB, Bertoni AG, Carnethon MR, Correa A, Echouffo-Tcheugui JB, Lange LA, Lloyd-Jones DM, Wilkins JT. Long-term absolute risk for cardiovascular disease stratified by fasting glucose level. Diabetes Care. 2019;42(3):457–65.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goraya TY, Leibson CL, Palumbo PJ, Weston SA, Killian JM, Pfeifer EA, Jacobsen SJ, Frye RL, Roger VL. Coronary atherosclerosis in diabetes mellitus: a population-based autopsy study. J Am Coll Cardiol. 2002;40(5):946–53.

    Article 
    PubMed 

    Google Scholar 

  • Giunzioni I, Tavori H, Covarrubias R, Major AS, Ding L, Zhang Y, DeVay RM, Hong L, Fan D, Predazzi IM, et al. Local effects of human PCSK9 on the atherosclerotic lesion. J Pathol. 2016;238(1):52–62.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferri N, Tibolla G, Pirillo A, Cipollone F, Mezzetti A, Pacia S, Corsini A, Catapano AL. Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels. Atherosclerosis. 2012;220(2):381–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng JM, Oemrawsingh RM, Garcia-Garcia HM, Boersma E, van Geuns RJ, Serruys PW, Kardys I, Akkerhuis KM. PCSK9 in relation to coronary plaque inflammation: results of the ATHEROREMO-IVUS study. Atherosclerosis. 2016;248:117–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seidah NG, Garcon D. Expanding biology of PCSK9: roles in atherosclerosis and beyond. Curr Atheroscler Rep. 2022;24(10):821–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, Seidah NG, Prat A. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012;125(7):894–901.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferri N, Marchiano S, Tibolla G, Baetta R, Dhyani A, Ruscica M, Uboldi P, Catapano AL, Corsini A. PCSK9 knock-out mice are protected from neointimal formation in response to perivascular carotid collar placement. Atherosclerosis. 2016;253:214–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferri N, Grego MF, Corsini A, Ruscica M. Proprotein convertase subtilisin/kexin type 9: an update on the cardiovascular outcome studies. Eur Heart J Suppl. 2020;22(Suppl E):E64–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M. Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels – experimental and clinical approaches with lipid-lowering agents. Eur J Prev Cardiol. 2019;26(9):930–49.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Benn M, Tybjaerg-Hansen A, Nordestgaard BG. Low LDL cholesterol by PCSK9 variation reduces cardiovascular mortality. J Am Coll Cardiol. 2019;73(24):3102–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eckel RH, Bornfeldt KE, Goldberg IJ. Cardiovascular disease in diabetes, beyond glucose. Cell Metab. 2021;33(8):1519–45.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gore MO, McGuire DK, Lingvay I, Rosenstock J. Predicting cardiovascular risk in type 2 diabetes: the heterogeneity challenges. Curr Cardiol Rep. 2015;17(7):607.

    Article 
    PubMed 

    Google Scholar 

  • El Khoury P, Roussel R, Fumeron F, Abou-Khalil Y, Velho G, Mohammedi K, Jacob MP, Steg PG, Potier L, Ghaleb Y, et al. Plasma proprotein-convertase-subtilisin/kexin type 9 (PCSK9) and cardiovascular events in type 2 diabetes. Diabetes Obes Metab. 2018;20(4):943–53.

    Article 
    PubMed 

    Google Scholar 

  • Bonfigli AR, Spazzafumo L, Prattichizzo F, Bonafe M, Mensa E, Micolucci L, Giuliani A, Fabbietti P, Testa R, Boemi M, et al. Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget. 2016;7(32):50835–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Association AD. Standards of medical care in diabetes–2006. Diabetes Care. 2006;29:s4–42.

    Article 

    Google Scholar 

  • Macchi C, Iodice S, Persico N, Ferrari L, Cantone L, Greco MF, Ischia B, Dozio E, Corsini A, Sirtori CR, et al. Maternal exposure to air pollutants, PCSK9 levels, fetal growth and gestational age – an Italian cohort. Environ Int. 2021;149:106163.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sabbatinelli J, Giuliani A, Bonfigli AR, Ramini D, Matacchione G, Campolucci C, Ceka A, Tortato E, Rippo MR, Procopio AD, et al. Prognostic value of soluble ST2, high-sensitivity cardiac troponin, and NT-proBNP in type 2 diabetes: a 15-year retrospective study. Cardiovasc Diabetol. 2022;21(1):180.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ogluszka M, Orzechowska M, Jedroszka D, Witas P, Bednarek AK. Evaluate cutpoints: adaptable continuous data distribution system for determining survival in Kaplan-Meier estimator. Comput Methods Programs Biomed. 2019;177:133–9.

    Article 
    PubMed 

    Google Scholar 

  • Scirica BM, Bhatt DL, Braunwald E, Raz I, Cavender MA, Im K, Mosenzon O, Udell JA, Hirshberg B, Pollack PS, et al. Prognostic implications of biomarker assessments in patients with type 2 diabetes at high cardiovascular risk: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 2016;1(9):989–98.

    Article 
    PubMed 

    Google Scholar 

  • Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rao AS, Lindholm D, Rivas MA, Knowles JW, Montgomery SB, Ingelsson E. Large-scale phenome-wide association study of PCSK9 variants demonstrates protection against ischemic stroke. Circ Genom Precis Med. 2018;11(7):e002162.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dron JS, Patel AP, Zhang Y, Jurgens SJ, Maamari DJ, Wang M, Boerwinkle E, Morrison AC, de Vries PS, Fornage M, et al. Association of rare protein-truncating DNA variants in APOB or PCSK9 with low-density lipoprotein cholesterol level and risk of coronary heart disease. JAMA Cardiol. 2023;8(3):258–67.

    Article 
    PubMed 

    Google Scholar 

  • Imbalzano E, Ilardi F, Orlando L, Pintaudi B, Savarese G, Rosano G. The efficacy of PCSK9 inhibitors on major cardiovascular events and lipid profile in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J Cardiovasc Pharmacother. 2023;9(4):318–27.

    Article 
    PubMed 

    Google Scholar 

  • Leander K, Malarstig A, Van’t Hooft FM, Hyde C, Hellenius ML, Troutt JS, Konrad RJ, Ohrvik J, Hamsten A, de Faire U. Circulating Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) predicts future risk of cardiovascular events independently of established risk factors. Circulation. 2016;133(13):1230–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liberale L, Carbone F, Bertolotto M, Bonaventura A, Vecchie A, Mach F, Burger F, Pende A, Spinella G, Pane B, et al. Serum PCSK9 levels predict the occurrence of acute coronary syndromes in patients with severe carotid artery stenosis. Int J Cardiol. 2018;263:138–41.

    Article 
    PubMed 

    Google Scholar 

  • Choi IJ, Lim S, Lee D, Lee WJ, Lee KY, Kim MJ, Jeon DS. Relation of Proprotein Convertase Subtilisin/Kexin type 9 to cardiovascular outcomes in patients undergoing percutaneous coronary intervention. Am J Cardiol. 2020;133:54–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song L, Zhao X, Chen R, Li J, Zhou J, Liu C, Zhou P, Wang Y, Chen Y, Zhao H, et al. Association of PCSK9 with inflammation and platelet activation markers and recurrent cardiovascular risks in STEMI patients undergoing primary PCI with or without diabetes. Cardiovasc Diabetol. 2022;21(1):80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ridker PM, Rifai N, Bradwin G, Rose L. Plasma proprotein convertase subtilisin/kexin type 9 levels and the risk of first cardiovascular events. Eur Heart J. 2016;37(6):554–60.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gencer B, Montecucco F, Nanchen D, Carbone F, Klingenberg R, Vuilleumier N, Aghlmandi S, Heg D, Raber L, Auer R, et al. Prognostic value of PCSK9 levels in patients with acute coronary syndromes. Eur Heart J. 2016;37(6):546–53.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rasmussen LD, Bottcher M, Ivarsen P, Jorgensen HS, Nyegaard M, Buttenschon H, Gustafsen C, Glerup S, Botker HE, Svensson M, et al. Association between circulating proprotein convertase subtilisin/kexin type 9 levels and prognosis in patients with severe chronic kidney disease. Nephrol Dial Transplant. 2020;35(4):632–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Group EUCCS, Regitz-Zagrosek V, Oertelt-Prigione S, Prescott E, Franconi F, Gerdts E, Foryst-Ludwig A, Maas AH, Kautzky-Willer A, Knappe-Wegner D, et al. Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Eur Heart J. 2016;37(1):24–34.

    Article 

    Google Scholar 

  • Lakoski SG, Lagace TA, Cohen JC, Horton JD, Hobbs HH. Genetic and metabolic determinants of plasma PCSK9 levels. J Clin Endocrinol Metab. 2009;94(7):2537–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferri N, Ruscica M, Coggi D, Bonomi A, Amato M, Frigerio B, Sansaro D, Ravani A, Veglia F, Capra N, et al. Sex-specific predictors of PCSK9 levels in a European population: the IMPROVE study. Atherosclerosis. 2020;309:39–46.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais P, Varigos J, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article 
    PubMed 

    Google Scholar 

  • Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang SH, Li S, Zhang Y, Xu RX, Guo YL, Zhu CG, Wu NQ, Cui CJ, Sun J, Li JJ. Positive correlation of plasma PCSK9 levels with HbA1c in patients with type 2 diabetes. Diabetes Metab Res Rev. 2016;32(2):193–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macchi C, Favero C, Ceresa A, Vigna L, Conti DM, Pesatori AC, Racagni G, Corsini A, Ferri N, Sirtori CR, et al. Depression and cardiovascular risk-association among beck depression inventory, PCSK9 levels and insulin resistance. Cardiovasc Diabetol. 2020;19(1):187.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dykun I, Bayturan O, Carlo J, Nissen SE, Kapadia SR, Tuzcu EM, Nicholls SJ, Puri R. HbA1c, coronary atheroma progression and cardiovascular outcomes. Am J Prev Cardiol. 2022;9:100317.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raghavan S, Vassy JL, Ho YL, Song RJ, Gagnon DR, Cho K, Wilson PWF, Phillips LS. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8(4):e011295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang X, Wen D, Chen Y, Ma L, You C. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: a Bayesian network meta-analysis. Cardiovasc Diabetol. 2022;21(1):107.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bayes-Genis A, Nunez J, Zannad F, Ferreira JP, Anker SD, Cleland JG, Dickstein K, Filippatos G, Lang CC, Ng LL, et al. The PCSK9-LDL receptor axis and outcomes in heart failure: BIOSTAT-CHF subanalysis. J Am Coll Cardiol. 2017;70(17):2128–36.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stralberg T, Nordenskjold A, Cao Y, Kublickiene K, Nilsson E. Proprotein convertase subtilisin/kexin type 9 and mortality in patients starting hemodialysis. Eur J Clin Invest. 2019;49(7):e13113.

    Article 
    PubMed 

    Google Scholar 

  • Brunner FJ, Waldeyer C, Ojeda F, Salomaa V, Kee F, Sans S, Thorand B, Giampaoli S, Brambilla P, Tunstall-Pedoe H, et al. Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the multinational cardiovascular risk consortium. Lancet. 2019;394(10215):2173–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu J, Sempos C, Donahue RP, Dorn J, Trevisan M, Grundy SM. Joint distribution of non-HDL and LDL cholesterol and coronary heart disease risk prediction among individuals with and without diabetes. Diabetes Care. 2005;28(8):1916–21.

    Article 
    PubMed 

    Google Scholar 

  • Marston NA, Giugliano RP, Melloni GEM, Park JG, Morrill V, Blazing MA, Ference B, Stein E, Stroes ES, Braunwald E, et al. Association of apolipoprotein B-containing lipoproteins and risk of myocardial infarction in individuals with and without atherosclerosis: distinguishing between particle concentration, type, and content. JAMA Cardiol. 2022;7(3):250–6.

    Article 
    PubMed 

    Google Scholar 

  • Johannesen CDL, Mortensen MB, Langsted A, Nordestgaard BG. Apolipoprotein B and Non-HDL cholesterol better reflect residual risk than LDL cholesterol in statin-treated patients. J Am Coll Cardiol. 2021;77(11):1439–50.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huh JH, Han KD, Cho YK, Roh E, Kang JG, Lee SJ, Ihm SH. Remnant cholesterol and the risk of cardiovascular disease in type 2 diabetes: a nationwide longitudinal cohort study. Cardiovasc Diabetol. 2022;21(1):228.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schneider DJ, Sobel BE. PAI-1 and diabetes: a journey from the bench to the bedside. Diabetes Care. 2012;35(10):1961–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levine JA, Oleaga C, Eren M, Amaral AP, Shang M, Lux E, Khan SS, Shah SJ, Omura Y, Pamir N, et al. Role of PAI-1 in hepatic steatosis and dyslipidemia. Sci Rep. 2021;11(1):430.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lupo MG, Bressan A, Donato M, Canzano P, Camera M, Poggio P, Greco MF, Garofalo M, De Martin S, Panighel G, et al. PCSK9 promotes arterial medial calcification. Atherosclerosis. 2022;346:86–97.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macchi C, Ferri N, Favero C, Cantone L, Vigna L, Pesatori AC, Lupo MG, Sirtori CR, Corsini A, Bollati V, et al. Long-term exposure to air pollution raises circulating levels of proprotein convertase subtilisin/kexin type 9 in obese individuals. Eur J Prev Cardiol. 2019;26(6):578–88.

    Article 
    PubMed 

    Google Scholar 

  • Ruscica M, Ferri N, Fogacci F, Rosticci M, Botta M, Marchiano S, Magni P, D’Addato S, Giovannini M, Borghi C, et al. Circulating levels of Proprotein Convertase Subtilisin/Kexin type 9 and arterial stiffness in a large population sample: data from the brisighella heart study. J Am Heart Assoc. 2017;6(5):e005764.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong B, Wu M, Li H, Kraemer FB, Adeli K, Seidah NG, Park SW, Liu J. Strong induction of PCSK9 gene expression through HNF1alpha and SREBP2: mechanism for the resistance to LDL-cholesterol lowering effect of statins in dyslipidemic hamsters. J Lipid Res. 2010;51(6):1486–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huijgen R, Fouchier SW, Denoun M, Hutten BA, Vissers MN, Lambert G, Kastelein JJP. Plasma levels of PCSK9 and phenotypic variability in familial hypercholesterolemia. J Lipid Res. 2012;53(5):979–83.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *