DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–62.
Google Scholar
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Ã. Type 1 diabetes mellitus. Nat Reviews Disease Primers. 2017;3:17016.
Google Scholar
Green A, Hede SM, Patterson CC, Wild SH, Imperatore G, Roglic G, Beran D. Type 1 diabetes in 2017: global estimates of incident and prevalent cases in children and adults. Diabetologia. 2021;64(12):2741–50.
Google Scholar
Lawrence JM, Divers J, Isom S, Saydah S, Imperatore G, Pihoker C, Marcovina SM, Mayer-Davis EJ, Hamman RF, Dolan L, et al. Trends in Prevalence of Type 1 and type 2 diabetes in children and adolescents in the US, 2001–2017. JAMA. 2021;326(8):717–27.
Google Scholar
Vallianou NG, Stratigou T, Geladari E, Tessier CM, Mantzoros CS, Dalamaga M. Diabetes type 1: can it be treated as an autoimmune disorder? Rev Endocr Metab Disord. 2021;22(4):859–76.
Google Scholar
Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, Federici M, Filippatos G, Grobbee DE, Hansen TB, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255–323.
Google Scholar
Sousa GR, Pober D, Galderisi A, Lv H, Yu L, Pereira AC, Doria A, Kosiborod M, Lipes MA. Glycemic Control, Cardiac Autoimmunity, and long-term risk of Cardiovascular Disease in Type 1 diabetes Mellitus. Circulation. 2019;139(6):730–43.
Google Scholar
Harjutsalo V, Pongrac Barlovic D, Groop PH. Long-term population-based trends in the incidence of cardiovascular disease in individuals with type 1 diabetes from Finland: a retrospective, nationwide, cohort study. Lancet Diabetes Endocrinol. 2021;9(9):575–85.
Google Scholar
Saeed M, Stene LC, Ariansen I, Tell GS, Tapia G, Joner G, Skrivarhaug T. Nine-fold higher risk of acute myocardial infarction in subjects with type 1 diabetes compared to controls in Norway 1973–2017. Cardiovasc Diabetol. 2022;21(1):59.
Google Scholar
Larsson SC, Wallin A, Hakansson N, Stackelberg O, Back M, Wolk A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int J Cardiol. 2018;262:66–70.
Google Scholar
Lee YB, Han K, Kim B, Lee SE, Jun JE, Ahn J, Kim G, Jin SM, Kim JH. Risk of early mortality and cardiovascular disease in type 1 diabetes: a comparison with type 2 diabetes, a nationwide study. Cardiovasc Diabetol. 2019;18(1):157.
Google Scholar
Morandi A, Piona C, Corradi M, Marigliano M, Giontella A, Orsi S, Emiliani F, Tagetti A, Marcon D, Fava C, et al. Risk factors for pre-clinical atherosclerosis in adolescents with type 1 diabetes. Diabetes Res Clin Pract. 2023;198:110618.
Google Scholar
O’Donnell CJ, Sabatine MS. Opportunities and Challenges in mendelian randomization studies to Guide Trial Design. JAMA Cardiol. 2018;3(10):967.
Google Scholar
Sanderson E, Glymour MM, Holmes MV, Kang H, Morrison J, Munafò MR, Palmer T, Schooling CM, Wallace C, Zhao Q, et al. Mendelian randomization. Nat Reviews Methods Primers. 2022;2(1):6.
Google Scholar
Huang M, Laina-Nicaise LD, Zha L, Tang T, Cheng X. Causal Association of type 2 diabetes Mellitus and Glycemic Traits with Cardiovascular Diseases and lipid traits: a mendelian randomization study. Front Endocrinol (Lausanne). 2022;13:840579.
Google Scholar
Liu B, Mason AM, Sun L, Di Angelantonio E, Gill D, Burgess S. Genetically predicted type 2 diabetes Mellitus Liability, Glycated Hemoglobin and Cardiovascular Diseases: a wide-angled mendelian randomization study. Genes (Basel) 2021, 12(10).
Ahmad OS, Morris JA, Mujammami M, Forgetta V, Leong A, Li R, Turgeon M, Greenwood CM, Thanassoulis G, Meigs JB, et al. A mendelian randomization study of the effect of type-2 diabetes on coronary heart disease. Nat Commun. 2015;6:7060.
Google Scholar
Forgetta V, Manousaki D, Istomine R, Ross S, Tessier MC, Marchand L, Li M, Qu HQ, Bradfield JP, Grant SFA, et al. Rare genetic variants of large effect influence risk of type 1 diabetes. Diabetes. 2020;69(4):784–95.
Google Scholar
Rodriguez-Tomé P, Stoehr PJ, Cameron GN, Flores TP. The european Bioinformatics Institute (EBI) databases. Nucleic Acids Res. 1996;24(1):6–12.
Google Scholar
Hartiala JA, Han Y, Jia Q, Hilser JR, Huang P, Gukasyan J, Schwartzman WS, Cai Z, Biswas S, Trégouët DA, et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction. Eur Heart J. 2021;42(9):919–33.
Google Scholar
Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, Hedman ÃK, Wilk JB, Morley MP, Chaffin MD, et al. Genome-wide association and mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun. 2020;11(1):163.
Google Scholar
van der Harst P, Verweij N. Identification of 64 Novel genetic loci provides an expanded view on the Genetic Architecture of Coronary Artery Disease. Circul Res. 2018;122(3):433–43.
Nielsen JB, Thorolfsdottir RB, Fritsche LG, Zhou W, Skov MW, Graham SE, Herron TJ, McCarthy S, Schmidt EM, Sveinbjornsson G, et al. Biobank-driven genomic discovery yields new insight into atrial fibrillation biology. Nat Genet. 2018;50(9):1234–9.
Google Scholar
Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, Rutten-Jacobs L, Giese AK, van der Laan SW, Gretarsdottir S, et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 2018;50(4):524–37.
Google Scholar
Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18.
Google Scholar
Locke AE, Steinberg KM, Chiang CWK, Service SK, Havulinna AS, Stell L, Pirinen M, Abel HJ, Chiang CC, Fulton RS, et al. Exome sequencing of finnish isolates enhances rare-variant association power. Nature. 2019;572(7769):323–8.
Google Scholar
Douglas Staiger JHS. Instrumental variables regression with weak instruments. Econometrica. 1997;65(3):557–86.
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, Laurin C, Burgess S, Bowden J, Langdon R et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 2018, 7.
Yavorska OO, Burgess S. MendelianRandomization: an R package for performing mendelian randomization analyses using summarized data. Int J Epidemiol 2017, 46(6):1734–9.
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.
Google Scholar
Pastore I, Bolla AM, Montefusco L, Lunati ME, Rossi A, Assi E, Zuccotti GV, Fiorina P. The impact of diabetes Mellitus on Cardiovascular Risk Onset in Children and Adolescents. Int J Mol Sci 2020, 21(14).
Petrie JR, Sattar N. Excess Cardiovascular risk in type 1 diabetes Mellitus. Circulation. 2019;139(6):744–7.
Google Scholar
Sousa GR, Kosiborod M, Bluemke DA, Lipes MA. Cardiac autoimmunity is Associated with subclinical myocardial dysfunction in patients with type 1 diabetes Mellitus. Circulation. 2020;141(13):1107–9.
Google Scholar
Stitziel NO, Kanter JE, Bornfeldt KE. Emerging targets for Cardiovascular Disease Prevention in Diabetes. Trends Mol Med. 2020;26(8):744–57.
Google Scholar
Sanderson E. Multivariable mendelian randomization and mediation. Cold Spring Harbor Perspectives in Medicine 2021, 11(2).
Jarvisalo MJ, Raitakari M, Toikka JO, Putto-Laurila A, Rontu R, Laine S, Lehtimaki T, Ronnemaa T, Viikari J, Raitakari OT. Endothelial dysfunction and increased arterial intima-media thickness in children with type 1 diabetes. Circulation. 2004;109(14):1750–5.
Google Scholar
Bharathy PS, Delhikumar CG, Rajappa M, Sahoo J, Anantharaj A. Early markers of atherosclerosis in children and adolescents with type 1 diabetes Mellitus. Indian J Pediatr. 2023;90(3):227–32.
Google Scholar
Giannopoulou EZ, Doundoulakis I, Antza C, Christoforidis A, Haidich AB, Kotsis V, Stabouli S. Subclinical arterial damage in children and adolescents with type 1 diabetes: a systematic review and meta-analysis. Pediatr Diabetes. 2019;20(6):668–77.
Google Scholar
Perez-Segura P, de Dios O, Herrero L, Vales-Villamarin C, Aragon-Gomez I, Gavela-Perez T, Garces C, Soriano-Guillen L. Children with type 1 diabetes have elevated high-sensitivity C-reactive protein compared with a control group. BMJ Open Diabetes Res Care 2020, 8(1).
Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014;22(3):147–51.
Google Scholar
Christoffersen M, Tybjaerg-Hansen A. Targeting IL-6 in patients at high cardiovascular risk. Lancet. 2021;397(10289):2025–7.
Google Scholar
Jia G, Sowers JR. Hypertension in diabetes: an update of Basic Mechanisms and Clinical Disease. Hypertension. 2021;78(5):1197–205.
Google Scholar
Ricciardi CA, Gnudi L. Kidney disease in diabetes: from mechanisms to clinical presentation and treatment strategies. Metabolism. 2021;124:154890.
Google Scholar
Lithovius R, Harjutsalo V, Mutter S, Gordin D, Forsblom C, Groop PH, FinnDiane Study G. Resistant hypertension and risk of adverse events in individuals with type 1 diabetes: a nationwide prospective study. Diabetes Care. 2020;43(8):1885–92.
Google Scholar
Rawshani A, Sattar N, Franzen S, Rawshani A, Hattersley AT, Svensson AM, Eliasson B, Gudbjornsdottir S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 2018;392(10146):477–86.
Google Scholar
Kerola AM, Semb AG, Juonala M, Palomaki A, Rautava P, Kyto V. Long-term cardiovascular prognosis of patients with type 1 diabetes after myocardial infarction. Cardiovasc Diabetol. 2022;21(1):177.
Google Scholar
Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes. 2005;54(Suppl 2):97–107.
Srikanta S, Ganda OP, Jackson RA, Gleason RE, Kaldany A, Garovoy MR, Milford EL, Carpenter CB, Soeldner JS, Eisenbarth GS. Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. Ann Intern Med. 1983;99(3):320–6.
Google Scholar
Velloso LA, Eizirik DL, Cnop M. Type 2 diabetes mellitus–an autoimmune disease? Nat Rev Endocrinol. 2013;9(12):750–5.
Google Scholar
Eizirik DL, Pasquali L, Cnop M. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16(7):349–62.
Google Scholar
Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC, Farber E, Bonnie JK, Szpak M, Schofield E, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015;47(4):381–6.
Google Scholar
Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, Payne AJ, Steinthorsdottir V, Scott RA, Grarup N, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50(11):1505–13.
Google Scholar
Gitelman SE, Bundy BN, Ferrannini E, Lim N, Blanchfield JL, DiMeglio LA, Felner EI, Gaglia JL, Gottlieb PA, Long SA, et al. Imatinib therapy for patients with recent-onset type 1 diabetes: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 2021;9(8):502–14.
Google Scholar
Brozzi F, Nardelli TR, Lopes M, Millard I, Barthson J, Igoillo-Esteve M, Grieco FA, Villate O, Oliveira JM, Casimir M, et al. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia. 2015;58(10):2307–16.
Google Scholar