World Health Organization. WHO reveals leading causes of death and disability worldwide: 2000–2019. https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019. Accessed 6 March 2023.
GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet. 2020;396(10258):1204–22.
Joseph P, Leong D, McKee M, Anand SS, Schwalm JD, Teo K, Mente A, Yusuf S. Reducing the Global Burden of Cardiovascular Disease, Part 1: the epidemiology and risk factors. Circ Res. 2017;121(6):677–94.
Google Scholar
Liu S, Li Y, Zeng X, Wang H, Yin P, Wang L, Liu Y, Liu J, Qi J, Ran S, et al. Burden of Cardiovascular Diseases in China, 1990–2016: findings from the 2016 global burden of Disease Study. JAMA Cardiol. 2019;4(4):342–52.
Google Scholar
National Center for Cardiovascular Diseases. Annual Report on Cardiovascular Health and Diseases in China (2021). Beijing: China Science Publishing & Media Ltd; 2022.
Lu P, Xia G, Zhao Q, Green D, Lim YH, Li S, Guo Y. Attributable risks of hospitalizations for urologic diseases due to heat exposure in Queensland, Australia, 1995–2016. Int J Epidemiol. 2022;51(1):144–54.
Google Scholar
Wei Q, Zhong L, Gao J, Yi W, Pan R, Gao J, Duan J, Xu Z, He Y, Liu X, et al. Diurnal temperature range and childhood asthma in Hefei, China: does temperature modify the association? Sci Total Environ. 2020;724:138206.
Google Scholar
Su X, Song H, Cheng Y, Yao X, Li Y. The mortality burden of nervous system diseases attributed to ambient temperature: a multi-city study in China. Sci Total Environ. 2021;800:149548.
Google Scholar
Cheng J, Xu Z, Bambrick H, Prescott V, Wang N, Zhang Y, Su H, Tong S, Hu W. Cardiorespiratory effects of heatwaves: a systematic review and meta-analysis of global epidemiological evidence. Environ Res. 2019;177:108610.
Google Scholar
Liu C, Luo B, Wang B, He L, Wu H, Hou L, Zhang K. Global spatiotemporal trends of cardiovascular diseases due to temperature in different climates and socio-demographic index regions from 1990 to 2019. Environ Sci Pollut Res Int. 2023;30(2):3282–92.
Google Scholar
Zhao Q, Guo Y, Ye T, Gasparrini A, Tong S, Overcenco A, Urban A, Schneider A, Entezari A, Vicedo-Cabrera AM, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health. 2021;5(7):e415–25.
Google Scholar
Chen H, Zhang X. Influences of temperature and humidity on cardiovascular disease among adults 65 years and older in China. Front Public Health. 2022;10:1079722.
Google Scholar
Xing Q, Sun Z, Tao Y, Shang J, Miao S, Xiao C, Zheng C. Projections of future temperature-related cardiovascular mortality under climate change, urbanization and population aging in Beijing, China. Environ Int. 2022;163:107231.
Google Scholar
Guo M, Zhou M, Li B, Du C, Yao R, Wang L, Yang X, Yu W. Reducing indoor relative humidity can improve the circulation and cardiorespiratory health of older people in a cold environment: a field trial conducted in Chongqing, China. Sci Total Environ. 2022;817:152695–5.
Google Scholar
Armstrong B, Sera F, Vicedo-Cabrera AM, Abrutzky R, Astrom DO, Bell ML, Chen BY, de Sousa ZSCM, Correa PM, Dang TN, et al. The role of Humidity in Associations of High temperature with mortality: a Multicountry, Multicity Study. Environ Health Perspect. 2019;127(9):97007.
Google Scholar
Fang W, Li Z, Gao J, Meng R, He G, Hou Z, Zhu S, Zhou M, Zhou C, Xiao Y, et al. The joint and interaction effect of high temperature and humidity on mortality in China. Environ Int. 2023;171:107669.
Google Scholar
Mohammadi D, Zare ZM, Zare SMJ. Short-term exposure to extreme temperature and risk of hospital admission due to cardiovascular diseases. Int J Environ Health Res. 2021;31(3):344–54.
Google Scholar
Nguyen JL, Dockery DW. Daily indoor-to-outdoor temperature and humidity relationships: a sample across seasons and diverse climatic regions. Int J Biometeorol. 2016;60(2):221–9.
Google Scholar
Zhang W, Du Z, Zhang D, Yu S, Huang Y, Hao Y. Assessing the impact of humidex on HFMD in Guangdong Province and its variability across social-economic status and age groups. Sci Rep. 2016;6:18965.
Google Scholar
García MC. Thermal differences, Comfort/Discomfort and Humidex Summer Climate in Mar del Plata, Argentina. Urban Climates in Latin America 2019:83–109.
Sirangelo B, Caloiero T, Coscarelli R, Ferrari E, Fusto F. Combining stochastic models of air temperature and vapour pressure for the analysis of the bioclimatic comfort through the Humidex. Sci Rep. 2020;10(1):11395.
Google Scholar
Fan C, Liu F, Zhao X, Ma Y, Yang F, Chang Z, Xiao X. An alternative comprehensive index to quantify the interactive effect of temperature and relative humidity on hand, foot and mouth disease: a two-stage time series study including 143 cities in mainland China. Sci Total Environ. 2020;740:140106.
Google Scholar
Zhao R, Gao Q, Hao Q, Wang S, Zhang Y, Li H, Jiang B. The exposure-response association between humidex and bacillary dysentery: a two-stage time series analysis of 316 cities in mainland China. Sci Total Environ. 2021;797:148840.
Google Scholar
Pan R, Gao J, Wang X, Bai L, Wei Q, Yi W, Xu Z, Duan J, Cheng Q, Zhang Y, et al. Impacts of exposure to humidex on the risk of childhood asthma hospitalizations in Hefei, China: effect modification by gender and age. Sci Total Environ. 2019;691:296–305.
Google Scholar
Arisco NJ, Sewe MO, Barnighausen T, Sie A, Zabre P, Bunker A. The effect of extreme temperature and precipitation on cause-specific deaths in rural Burkina Faso: a longitudinal study. Lancet Planet Health. 2023;7(6):e478–89.
Google Scholar
Xu R, Huang S, Shi C, Wang R, Liu T, Li Y, Zheng Y, Lv Z, Wei J, Sun H, et al. Extreme temperature events, fine particulate matter, and myocardial infarction mortality. Circulation. 2023;148(4):312–23.
Google Scholar
Niu Y, Zhou Y, Chen R, Yin P, Meng X, Wang W, Liu C, Ji JS, Qiu Y, Kan H, et al. Long-term exposure to ozone and cardiovascular mortality in China: a nationwide cohort study. Lancet Planet Health. 2022;6(6):e496–e503.
Google Scholar
Schwartz BG, Qualls C, Kloner RA, Laskey WK. Relation of Total and Cardiovascular Death Rates to Climate System, temperature, barometric pressure, and respiratory infection. Am J Cardiol. 2015;116(8):1290–7.
Google Scholar
Masterton JM, Richardson FA. Humidex: a method of quantifying human discomfort due to excessive heat and humidity. Canada: Environment Canada Atmopheric Environment Service; 1979.
Canadian Centre for Occupational Health and Safety. Humidex rating and work. https://www.ccohs.ca/oshanswers/phys_agents/humidex.html. Accessed 30 June 2023.
Kephart JL, Sanchez BN, Moore J, Schinasi LH, Bakhtsiyarava M, Ju Y, Gouveia N, Caiaffa WT, Dronova I, Arunachalam S, et al. City-level impact of extreme temperatures and mortality in Latin America. Nat Med. 2022;28(8):1700–5.
Google Scholar
Feng Y, Ning M, Lei Y, Sun Y, Liu W, Wang J. Defending blue sky in China: effectiveness of the Air Pollution Prevention and Control Action Plan on air quality improvements from 2013 to 2017. J Environ Manage. 2019;252:109603.
Google Scholar
Yang B-Y, Guo Y, Markevych I, Qian ZM, Bloom MS, Heinrich J, Dharmage SC, Rolling CA, Jordan SS, Komppula M, et al. Association of Long-term exposure to Ambient Air Pollutants with Risk factors for Cardiovascular Disease in China. JAMA Netw open. 2019;2(3):e190318–8.
Google Scholar
Kaufman JD, Elkind MSV, Bhatnagar A, Koehler K, Balmes JR, Sidney S, Burroughs PMS, Dockery DW, Hou L, Brook RD, et al. Guidance to reduce the Cardiovascular Burden of Ambient Air Pollutants: a Policy Statement from the American Heart Association. Circulation. 2020;142(23):e432–47.
Google Scholar
Akaike H. A new look at statistical model identification. IEEE Trans Autom Control. 1974;AC19(6):716–23.
Gasparrini A, Armstrong B, Kenward MG. Multivariate meta-analysis for non-linear and other multi-parameter associations. Stat Med. 2012;31(29):3821–39.
Google Scholar
Gasparrini A, Armstrong B. Reducing and meta-analysing estimates from distributed lag non-linear models. BMC Med Res Methodol. 2013;13(1):1–1.
Google Scholar
Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. 2014;14:55.
Google Scholar
Chen R, Yin P, Wang L, Liu C, Niu Y, Wang W, Jiang Y, Liu Y, Liu J, Qi J, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main chinese cities. BMJ. 2018;363:k4306.
Google Scholar
Zeng J, Zhang X, Yang J, Bao J, Xiang H, Dear K, Liu Q, Lin S, Lawrence WR, Lin A et al. Humidity may modify the relationship between temperature and Cardiovascular Mortality in Zhejiang Province, China. Int J Environ Res Public Health 2017, 14(11).
Moghadamnia TM, Ardalan. Ali, Mesdaghinia, Alireza, Naddafi, Kazem, Yekaninejad, Saeed M: The Effects of Apparent Temperature on Cardiovascular Mortality Using a Distributed Lag Nonlinear Model Analysis: 2005 to 2014. Asia-Pacific journal of public health 2018.
Zhang Y. Jin, Ling, Zhongjun: Human responses to high humidity in elevated temperatures for people in hot-humid climates (vol 114, pg 257, 2017). Building and environment 2017.
Zuo C, Luo L, Liu W. Effects of increased humidity on physiological responses, thermal comfort, perceived air quality, and Sick Building syndrome symptoms at elevated indoor temperatures for subjects in a hot-humid climate. Indoor Air. 2021;31(2):524–40.
Google Scholar
Fan X, Liu W, Wargocki P. Physiological and psychological reactions of sub-tropically acclimatized subjects exposed to different indoor temperatures at a relative humidity of 70. Indoor Air. 2019;29(2):215–30.
Google Scholar
Higuma T, Yoneyama K, Nakai M, Kaihara T, Sumita Y, Watanabe M, Doi S, Miyamoto Y, Yasuda S, Ishibashi Y, et al. Effects of temperature and humidity on acute myocardial infarction hospitalization in a super-aging society. Sci Rep. 2021;11(1):22832.
Google Scholar
Davis RE, McGregor GR, Enfield KB. Humidity: a review and primer on atmospheric moisture and human health. Environ Res. 2016;144(Pt A):106–16.
Google Scholar
Ikaheimo TM. Cardiovascular diseases, cold exposure and exercise. Temp (Austin). 2018;5(2):123–46.
Ishmatov A. Influence of weather and seasonal variations in temperature and humidity on supersaturation and enhanced deposition of submicron aerosols in the human respiratory tract. Atmos Environ. 2020;223(Feb):117226117221–9.
Yang L, Li L, Lewington S, Guo Y, Sherliker P, Bian Z, Collins R, Peto R, Liu Y, Yang R, et al. Outdoor temperature, blood pressure, and cardiovascular disease mortality among 23 000 individuals with diagnosed cardiovascular diseases from China. Eur Heart J. 2015;36(19):1178–85.
Google Scholar
Alahmad B, Khraishah H, Roye D, Vicedo-Cabrera AM, Guo Y, Papatheodorou SI, Achilleos S, Acquaotta F, Armstrong B, Bell ML, et al. Associations between Extreme Temperatures and Cardiovascular cause-specific mortality: results from 27 countries. Circulation. 2023;147(1):35–46.
Google Scholar
Psistaki K, Dokas IM, Paschalidou AK. The impact of ambient temperature on Cardiorespiratory Mortality in Northern Greece. Int J Environ Res Public Health 2022, 20(1).
Silveira IH, Oliveira BFA, Cortes TR, Junger WL. The effect of ambient temperature on cardiovascular mortality in 27 brazilian cities. Sci Total Environ. 2019;691:996–1004.
Google Scholar
Luo Y, Li H, Huang F, Van Halm-Lutterodt N, Qin X, Wang A, Guo J, Tao L, Li X, Liu M, et al. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: a large database study in Beijing, China between years 2013 and 2014-Utilizing a distributed lag non-linear analysis. Environ Pollut. 2018;232:90–6.
Google Scholar
Turner LR, Barnett AG, Connell D, Tong S. Ambient temperature and cardiorespiratory morbidity: a systematic review and meta-analysis. Epidemiology. 2012;23(4):594–606.
Google Scholar
Huang C, Barnett AG, Xu Z, Chu C, Wang X, Turner LR, Tong S. Managing the health effects of temperature in response to climate change: challenges ahead. Environ Health Perspect. 2013;121(4):415–9.
Google Scholar
Achebak H, Devolder D, Ballester J. Trends in temperature-related age-specific and sex-specific mortality from cardiovascular diseases in Spain: a national time-series analysis. Lancet Planet Health. 2019;3(7):e297–e306.
Google Scholar
Ordanovich D, Tobías A, Ramiro D. Temporal variation of the temperature-mortality association in Spain: a nationwide analysis. Environ Health. 2023;22(1):5–5.
Google Scholar
Weilnhammer V, Schmid J, Mittermeier I, Schreiber F, Jiang L, Pastuhovic V, Herr C, Heinze S. Extreme weather events in europe and their health consequences – a systematic review. Int J Hyg Environ Health. 2021;233:113688.
Google Scholar
Wong CW, Kwok CS, Narain A, Gulati M, Mihalidou AS, Wu P, Alasnag M, Myint PK, Mamas MA. Marital status and risk of cardiovascular diseases: a systematic review and meta-analysis. Heart. 2018;104(23):1937–48.
Google Scholar
Zueras P, Rutigliano R, Trias-Llimos S. Marital status, living arrangements, and mortality in middle and older age in Europe. Int J Public Health. 2020;65(5):627–36.
Google Scholar
Wang Y, Jiao Y, Nie J, O’Neil A, Huang W, Zhang L, Han J, Liu H, Zhu Y, Yu C, et al. Sex differences in the association between marital status and the risk of cardiovascular, cancer, and all-cause mortality: a systematic review and meta-analysis of 7,881,040 individuals. Glob Health Res Policy. 2020;5:4.
Google Scholar
Leung CY, Huang HL, Abe SK, Saito E, Islam MR, Rahman MS, Ikeda A, Sawada N, Tamakoshi A, Gao YT, et al. Association of Marital Status with Total and cause-specific mortality in Asia. JAMA Netw Open. 2022;5(5):e2214181.
Google Scholar
Conte KR. Extreme temperature and mortality by Educational Attainment in Spain, 2012–2018. Eur J Popul. 2022;38(5):1145–82.
Openshaw S. Ecological fallacies and the analysis of areal census data. Environ Plan A. 1984;16(1):17–31.
Google Scholar