Nikolay B. A review of West Nile and Usutu virus co-circulation in Europe: how much do transmission cycles overlap? Trans R Soc Trop Med Hyg. 2015;109:609–18. https://doi.org/10.1093/trstmh/trv066.
Google Scholar
Byas AD, Ebel GD. Comparative Pathology of West Nile Virus in humans and non-human animals. Pathogens. 2020;9:48. https://doi.org/10.3390/pathogens9010048.
Google Scholar
Cadar D, Simonin Y. Human Usutu Virus Infections in Europe: a New Risk on Horizon? Viruses. 2023;15:77. https://doi.org/10.3390/v15010077.
Google Scholar
Hubálek Z, Halouzka J. West Nile fever–a reemerging mosquito-borne viral disease in Europe. Emerg Infect Dis. 1999;5:643–50. https://doi.org/10.3201/eid0505.990505.
Google Scholar
Bakonyi T, Ivanics E, Erdélyi K, Ursu K, Ferenczi E, Weissenböck H, Nowotny N. Lineage 1 and 2 strains of encephalitic West Nile virus, central Europe. Emerg Infect Dis. 2006;12:618–23. https://doi.org/10.3201/eid1204.051379.
Google Scholar
European Centre for Disease Prevention and Control. West Nile virus infection. Annual Epidemiological Report for 2019. Stockholm; 2021.
Ziegler U, Lühken R, Keller M, Cadar D, van der Grinten E, Michel F, et al. West Nile virus epizootic in Germany, 2018. Antiviral Res. 2019;162:39–43. https://doi.org/10.1016/j.antiviral.2018.12.005.
Google Scholar
Ziegler U, Santos PD, Groschup MH, Hattendorf C, Eiden M, Höper D, et al. West Nile Virus Epidemic in Germany triggered by epizootic emergence, 2019. Viruses. 2020;12:448. https://doi.org/10.3390/v12040448.
Google Scholar
Ziegler U, Bergmann F, Fischer D, Müller K, Holicki CM, Sadeghi B, et al. Spread of West Nile Virus and Usutu Virus in the german Bird Population, 2019–2020. Microorganisms. 2022;10:807. https://doi.org/10.3390/microorganisms10040807.
Google Scholar
Frank C, Schmidt-Chanasit J, Ziegler U, Lachmann R, Preußel K, Offergeld R. West Nile Virus in Germany: an emerging infection and its relevance for Transfusion Safety. Transfus Med Hemother. 2022;49:192–204. https://doi.org/10.1159/000525167.
Google Scholar
Weissenböck H, Kolodziejek J, Url A, Lussy H, Rebel-Bauder B, Nowotny N. Emergence of Usutu virus, an african mosquito-borne flavivirus of the japanese encephalitis virus group, central Europe. Emerg Infect Dis. 2002;8:652–6. https://doi.org/10.3201/eid0807.020094.
Google Scholar
Weissenböck H, Bakonyi T, Rossi G, Mani P, Nowotny N. Usutu virus, Italy, 1996. Emerg Infect Dis. 2013;19:274–7. https://doi.org/10.3201/eid1902.121191.
Google Scholar
Jöst H, Bialonski A, Maus D, Sambri V, Eiden M, Groschup MH, et al. Isolation of usutu virus in Germany. Am J Trop Med Hyg. 2011;85:551–3. https://doi.org/10.4269/ajtmh.2011.11-0248.
Google Scholar
Michel F, Sieg M, Fischer D, Keller M, Eiden M, Reuschel M, et al. Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident birds in Germany, 2017 and 2018. Viruses. 2019;11:674. https://doi.org/10.3390/v11070674.
Google Scholar
Sieg M, Schmidt V, Ziegler U, Keller M, Höper D, Heenemann K, et al. Outbreak and cocirculation of three different Usutu virus strains in Eastern Germany. Vector Borne Zoonotic Dis. 2017;17:662–4. https://doi.org/10.1089/vbz.2016.2096.
Google Scholar
Becker N, Jöst H, Ziegler U, Eiden M, Höper D, Emmerich P, et al. Epizootic emergence of Usutu virus in wild and captive birds in Germany. PLoS ONE. 2012;7:e32604. https://doi.org/10.1371/journal.pone.0032604.
Google Scholar
Zannoli S, Sambri V. West Nile Virus and Usutu Virus Co-Circulation in Europe: Epidemiology and Implications. Microorganisms. 2019;7:184. https://doi.org/10.3390/microorganisms7070184.
Google Scholar
Santos PD, Michel F, Wylezich C, Höper D, Keller M, Holicki CM, et al. Co-infections: simultaneous detections of West Nile virus and Usutu virus in birds from Germany. Transbound Emerg Dis. 2021;1–17. https://doi.org/10.1111/tbed.14050.
Lauriano A, Rossi A, Galletti G, Casadei G, Santi A, Rubini S, et al. West Nile and Usutu Viruses’ Surveillance in birds of the Province of Ferrara, Italy, from 2015 to 2019. Viruses. 2021;13:1367. https://doi.org/10.3390/v13071367.
Google Scholar
Aberle SW, Kolodziejek J, Jungbauer C, Stiasny K, Aberle JH, Zoufaly A, et al. Increase in human West Nile and Usutu virus infections, Austria, 2018. Euro Surveill. 2018. https://doi.org/10.2807/1560-7917.ES.2018.23.43.1800545.
Google Scholar
Goenaga S, Goenaga J, Boaglio ER, Enria DA, Del Levis SC. Superinfection exclusion studies using West Nile virus and Culex flavivirus strains from Argentina. Mem Inst Oswaldo Cruz. 2020;115:e200012. https://doi.org/10.1590/0074-02760200012.
Google Scholar
Colmant AMG, Hall-Mendelin S, Ritchie SA, Bielefeldt-Ohmann H, Harrison JJ, Newton ND, et al. The recently identified flavivirus Bamaga virus is transmitted horizontally by Culex mosquitoes and interferes with West Nile virus replication in vitro and transmission in vivo. PLoS Negl Trop Dis. 2018;12:e0006886. https://doi.org/10.1371/journal.pntd.0006886.
Google Scholar
Wang H, Abbo SR, Visser TM, Westenberg M, Geertsema C, Fros JJ, et al. Competition between Usutu virus and West Nile virus during simultaneous and sequential infection of Culex pipiens mosquitoes. Emerg Microbes Infect. 2020;9:2642–52. https://doi.org/10.1080/22221751.2020.1854623.
Google Scholar
Swayne DE, Beck JR, Smith CS, Shieh WJ, Zaki SR. Fatal encephalitis and myocarditis in young domestic geese (Anser anser domesticus) caused by West Nile virus. Emerg Infect Dis. 2001;7:751–3. https://doi.org/10.3201/eid0704.010429.
Google Scholar
Holicki CM, Michel F, Vasić A, Fast C, Eiden M, Răileanu C, et al. Pathogenicity of West Nile Virus lineage 1 to german poultry. Vaccines (Basel). 2020;8:507. https://doi.org/10.3390/vaccines8030507.
Google Scholar
Reemtsma H, Holicki CM, Fast C, Bergmann F, Eiden M, Groschup MH, Ziegler U. Pathogenesis of West Nile Virus lineage 2 in domestic geese after experimental infection. Viruses. 2022;14:1319. https://doi.org/10.3390/v14061319.
Google Scholar
Chao J, Ball GH. Comparison of amino acid utilization by cell lines of Culex tarsalis and of Culex pipiens. Invertebrate Tissue Culture. 1976;263–6. https://doi.org/10.1016/B978-0-12-429740-1.50028-X.
Eiden M, Vina-Rodriguez A, Hoffmann B, Ziegler U, Groschup MH. Two new real-time quantitative reverse transcription polymerase chain reaction assays with unique target sites for the specific and sensitive detection of lineages 1 and 2 West Nile virus strains. J Vet Diagn Invest. 2010;22:748–53. https://doi.org/10.1177/104063871002200515.
Google Scholar
Pinho Dos Reis V, Keller M, Schmidt K, Ulrich RG, Groschup MH. αVβ3 integrin expression is essential for replication of Mosquito and Tick-Borne Flaviviruses in Murine Fibroblast cells. Viruses. 2021. https://doi.org/10.3390/v14010018.
Google Scholar
RStudio Team. RStudio: Integrated Development for R. 2019. http://www.rstudio.com/.
R Core Team. R: A language and environment for statistical computing. 2019. https://www.R-project.org/.
Fox J, Weisberg S. An R companion to applied regression. Los Angeles: SAGE; 2018.
Lenth RV. Least-Squares Means: the R Package lsmeans. J Stat Soft. 2016. https://doi.org/10.18637/jss.v069.i01.
Google Scholar
Bakonyi T, Lussy H, Weissenböck H, Hornyák A, Nowotny N. In vitro host-cell susceptibility to Usutu virus. Emerg Infect Dis. 2005;11:298–301. https://doi.org/10.3201/eid1102.041016.
Google Scholar
Hayes EB, Komar N, Nasci RS, Montgomery SP, O’Leary DR, Campbell GL. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis. 2005;11:1167–73. https://doi.org/10.3201/eid1108.050289a.
Google Scholar
Chvala S, Bakonyi T, Hackl R, Hess M, Nowotny N, Weissenböck H. Limited pathogenicity of usutu virus for the domestic goose (Anser anser f. domestica) following experimental inoculation. J Vet Med B Infect Dis Vet Public Health. 2006;53:171–5. https://doi.org/10.1111/j.1439-0450.2006.00942.x.
Google Scholar
Salas-Benito JS, de Nova-Ocampo M. Viral interference and persistence in Mosquito-Borne Flaviviruses. J Immunol Res. 2015;2015:873404. https://doi.org/10.1155/2015/873404.
Google Scholar
Holicki CM, Ziegler U, Răileanu C, Kampen H, Werner D, Schulz J, et al. West Nile virus lineage 2 vector competence of indigenous Culex and Aedes mosquitoes from Germany at temperate climate conditions. Viruses. 2020. https://doi.org/10.3390/v12050561.
Google Scholar
Martinet J-P, Bohers C, Vazeille M, Ferté H, Mousson L, Mathieu B et al. Assessing vector competence of mosquitoes from northeastern France to West Nile virus and Usutu virus 2023. https://doi.org/10.1101/2023.02.07.527438.
Reisen WK, Fang Y, Martinez VM. Effects of temperature on the transmission of West Nile Virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol. 2006;43:309–17. https://doi.org/10.1093/jmedent/43.2.309.
Google Scholar
Bates TA, Chuong C, Hawks SA, Rai P, Duggal NK, Weger-Lucarelli J. Development and characterization of infectious clones of two strains of Usutu virus. Virology. 2021;554:28–36. https://doi.org/10.1016/j.virol.2020.12.004.
Google Scholar
Ludwig GV, Iacono-Connors LC. Insect-transmitted vertebrate viruses: flaviviridae. In Vitro Cell Dev Biol Anim. 1993;29A:296–309. https://doi.org/10.1007/BF02633958.
Google Scholar
Boylan BT, Moreira FR, Carlson TW. Mosquito cell-derived West Nile virus replicon particles mimic arbovirus inoculum and have reduced spread in mice. PLoS Negl Trop Dis. 2017;11:e0005394. https://doi.org/10.1371/journal.pntd.0005394.
Google Scholar
Fros JJ, Miesen P, Vogels CB, Gaibani P, Sambri V, Martina BE, et al. Comparative Usutu and West Nile virus transmission potential by local Culex pipiens mosquitoes in north-western Europe. One Health. 2015;1:31–6. https://doi.org/10.1016/j.onehlt.2015.08.002.
Google Scholar
Rückert C, Prasad AN, Garcia-Luna SM, Robison A, Grubaugh ND, Weger-Lucarelli J, Ebel GD. Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection. Insect Biochem Mol Biol. 2019;109:13–23. https://doi.org/10.1016/j.ibmb.2019.04.008.
Google Scholar
Clé M, Constant O, Barthelemy J, Desmetz C, Martin MF, Lapeyre L, et al. Differential neurovirulence of Usutu virus lineages in mice and neuronal cells. J Neuroinflammation. 2021;18:11. https://doi.org/10.1186/s12974-020-02060-4.
Google Scholar
Riccetti S, Sinigaglia A, Desole G, Nowotny N, Trevisan M, Barzon L. Modelling West Nile Virus and Usutu Virus pathogenicity in human neural stem cells. Viruses. 2020;12:882. https://doi.org/10.3390/v12080882.
Google Scholar
Pepin KM, Lambeth K, Hanley KA. Asymmetric competitive suppression between strains of dengue virus. BMC Microbiol. 2008;8:28. https://doi.org/10.1186/1471-2180-8-28.
Google Scholar
Kenney JL, Solberg OD, Langevin SA, Brault AC. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol. 2014;95:2796–808. https://doi.org/10.1099/vir.0.068031-0.
Google Scholar
Laureti M, Paradkar PN, Fazakerley JK, Rodriguez-Andres J. Superinfection Exclusion in Mosquitoes and its potential as an Arbovirus Control Strategy. Viruses. 2020. https://doi.org/10.3390/v12111259.
Google Scholar
Prow NA, Edmonds JH, Williams DT, Setoh YX, Bielefeldt-Ohmann H, Suen WW, et al. Virulence and evolution of West Nile Virus, Australia, 1960–2012. Emerg Infect Dis. 2016;22:1353–62. https://doi.org/10.3201/eid2208.151719.
Google Scholar
Körsten C, AL-Hosary AA, Holicki CM, Schäfer M, Tews BA, Vasić A, et al. Simultaneous coinfections with West Nile Virus and Usutu Virus in Culex pipiens and Aedes vexans mosquitoes. Transbound Emerg Dis. 2023;2023:1–13. https://doi.org/10.1155/2023/6305484.
Google Scholar