Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections

Abstract

Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a ‘good’ new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.

This is a preview of subscription content, access via your institution

Access options

/* style specs start */
style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login>li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login>li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login>li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube,.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-buybox-to{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center}.BuyBoxSection-683559780 .price-info-text{font-size:16px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-value{font-size:30px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-per-period{font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .tax-buybox{display:block;width:100%;color:#222;padding:20px 16px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:NaNpx}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container>*{flex:1px}.BuyBoxSection-683559780 .button-container>a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2496381730:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1651148777{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2496381730{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2496381730 .readcube-label{color:#069}
/* style specs end */

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Learn more

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targets associated with outer membrane biogenesis and cognate inhibitors.
Fig. 2: Targets involved in regulating lipopolysaccharide biogenesis and cognate inhibitors.
Fig. 3: Targets involved in peptidoglycan biosynthesis and cognate inhibitors.
Fig. 4: Targets involved in tRNA biology and regulation of translation and cognate inhibitors.

References

  1. Butler, M. S. et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed. Antimicrob. Agents Chemother. 66, e0199121 (2022).

    Article 
    PubMed 

    Google Scholar 

  2. Martínez-García, L., González-Alba, J. M., Baquero, F., Cantón, R. & Galán, J. C. Ceftazidime is the key diversification and selection driver of VIM-type carbapenemases. mBio 9, e02109–e02117 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  3. Baquero, F. et al. Allogenous selection of mutational collateral resistance: old drugs select for new resistance within antibiotic families. Front. Microbiol. 12, 757833 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  4. Rajer, F., Allander, L., Karlsson, P. A. & Sandegren, L. Evolutionary trajectories toward high-level β-lactam/β-lactamase inhibitor resistance in the presence of multiple β-lactamases. Antimicrob. Agents Chemother. 66, e0029022 (2022).

    Article 
    PubMed 

    Google Scholar 

  5. Poirel, L., Sadek, M., Kusaksizoglu, A. & Nordmann, P. Co-resistance to ceftazidime–avibactam and cefiderocol in clinical isolates producing KPC variants. Eur. J. Clin. Microbiol. Infect. Dis. 41, 677–680 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  6. Silver, L. L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  7. Baker, S. J., Payne, D. J., Rappuoli, R. & De Gregorio, E. Technologies to address antimicrobial resistance. Proc. Natl Acad. Sci. USA 115, 12887–12895 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  8. Payne, D. J., Gwynn, M. N., Holmes, D. J. & Pompliano, D. L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat. Rev. Drug Discov. 6, 29–40 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  9. Tommasi, R., Brown, D. G., Walkup, G. K., Manchester, J. I. & Miller, A. A. ESKAPEing the labyrinth of antibacterial discovery. Nat. Rev. Drug Discov. 14, 529–542 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  10. Brotz-Oesterhelt, H. & Sass, P. Postgenomic strategies in antibacterial drug discovery. Future Microbiol. 5, 1553–1579 (2010).

    Article 
    PubMed 

    Google Scholar 

  11. Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov. 12, 371–387 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  12. Muñoz, K. A. & Hergenrother, P. J. Facilitating compound entry as a means to discover antibiotics for Gram-negative bacteria. Acc. Chem. Res. 54, 1322–1333 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  13. Zhao, S. et al. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat. Chem. Biol. 16, 1293–1302 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  14. Sadybekov, A. V. & Katritch, V. Computational approaches streamlining drug discovery. Nature 616, 673–685 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  15. Lluka, T. & Stokes, J. M. Antibiotic discovery in the artificial intelligence era. Ann. NY Acad. Sci. 1519, 74–93 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  16. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  17. Mobegi, F. M. et al. From microbial gene essentiality to novel antimicrobial drug targets. BMC Genomics 15, 958 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  18. Agarwal, P. & Searls, D. B. Can literature analysis identify innovation drivers in drug discovery? Nat. Rev. Drug Discov. 8, 865 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  19. Lange, R. P., Locher, H. H., Wyss, P. C. & Then, R. L. The targets of currently used antibacterial agents: lessons for drug discovery. Curr. Pharm. Des. 13, 3140–3154 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  20. Theuretzbacher, U. & Piddock, L. J. V. Non-traditional antibacterial therapeutic options and challenges. Cell Host Microbe 26, 61–72 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  21. Frearson, J. A., Wyatt, P. G., Gilbert, I. H. & Fairlamb, A. H. Target assessment for antiparasitic drug discovery. Trends Parasitol. 23, 589–595 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  22. Streker, K. et al. In vitro and in vivo validation of ligA and tarI as essential targets in Staphylococcus aureus. Antimicrob. Agents Chemother. 52, 4470–4474 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  23. Rancati, G., Moffat, J., Typas, A. & Pavelka, N. Emerging and evolving concepts in gene essentiality. Nat. Rev. Genet. 19, 34–49 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  24. Bosch-Guiteras, N. & van Leeuwen, J. Exploring conditional gene essentiality through systems genetics approaches in yeast. Curr. Opin. Genet. Dev. 76, 101963 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  25. Zhang, Z. & Ren, Q. Why are essential genes essential? – the essentiality of Saccharomyces genes. Microb. Cell 2, 280–287 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  26. Chessher, A. Evaluating the suitability of essential genes as targets for antibiotic screening assays using proteomics. Protein Cell 3, 5–7 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  27. Editorial. Putting gene essentiality into context. Nat. Rev. Genet. 19, 1 (2017).

    Google Scholar 

  28. Chaudhary, A. S., Chen, W., Jin, J., Tai, P. C. & Wang, B. SecA: a potential antimicrobial target. Future Med. Chem. 7, 989–1007 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  29. Emmerich, C. H. et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 20, 64–81 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  30. Murima, P., McKinney, J. D. & Pethe, K. Targeting bacterial central metabolism for drug development. Chem. Biol. 21, 1423–1432 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  31. Hedstrom, L. The bare essentials of antibiotic target validation. ACS Infect. Dis. 3, 2–4 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  32. Hogan, A. M. & Cardona, S. T. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol. Rev. 46, fuac005 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  33. Bergmiller, T., Ackermann, M. & Silander, O. K. Patterns of evolutionary conservation of essential genes correlate with their compensability. PLoS Genet. 8, e1002803 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  34. Dunman, P. M. & Tomaras, A. P. Translational deficiencies in antibacterial discovery and new screening paradigms. Curr. Opin. Microbiol. 27, 108–113 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  35. Rosconi, F. et al. A bacterial pan-genome makes gene essentiality strain-dependent and evolvable. Nat. Microbiol. 7, 1580–1592 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  36. Kaur, H., Kalia, M. & Taneja, N. Identification of novel non-homologous drug targets against Acinetobacter baumannii using subtractive genomics and comparative metabolic pathway analysis. Microb. Pathog. 152, 104608 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  37. Uddin, R., Masood, F., Azam, S. S. & Wadood, A. Identification of putative non-host essential genes and novel drug targets against Acinetobacter baumannii by in silico comparative genome analysis. Microb. Pathog. 128, 28–35 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  38. Ramos, P. I. P. et al. An integrative, multi-omics approach towards the prioritization of Klebsiella pneumoniae drug targets. Sci. Rep. 8, 10755 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  39. Rafiq, H. et al. A computational subtractive genome analysis for the characterization of novel drug targets in Klebsiella pneumoniae strain PittNDM01. Microb. Pathog. 146, 104245 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  40. Uddin, R. & Jamil, F. Prioritization of potential drug targets against P. aeruginosa by core proteomic analysis using computational subtractive genomics and protein–protein interaction network. Comput. Biol. Chem. 74, 115–122 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  41. Nazarshodeh, E., Marashi, S. A. & Gharaghani, S. Structural systems pharmacology: a framework for integrating metabolic network and structure-based virtual screening for drug discovery against bacteria. PLoS ONE 16, e0261267 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  42. Bakheet, T. M. & Doig, A. J. Properties and identification of antibiotic drug targets. BMC Bioinformatics 11, 195 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  43. Bosch, B. et al. Genome-wide gene expression tuning reveals diverse vulnerabilities of M. tuberculosis. Cell 184, 4579–4592.e24 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  44. Hawkins, J. S. et al. Mismatch-CRISPRi reveals the co-varying expression–fitness relationships of essential genes in Escherichia coli and Bacillus subtilis. Cell Syst. 11, 523–535.e9 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  45. Luo, H., Gao, F. & Lin, Y. Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes. Sci. Rep. 5, 13210 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  46. Arun, P. V. P. S. et al. Identification and functional analysis of essential, conserved, housekeeping and duplicated genes. FEBS Lett. 590, 1428–1437 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  47. Du, W. et al. Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J. Bacteriol. 182, 4146–4152 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  48. Naz, S., Ngo, T., Farooq, U. & Abagyan, R. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens. PeerJ 5, e3765–e3765 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  49. Klahn, P. & Bronstrup, M. New structural templates for clinically validated and novel targets in antimicrobial drug research and development. Curr. Top. Microbiol. Immunol. 398, 365–417 (2016).

    CAS 
    PubMed 

    Google Scholar 

  50. Miranda, R. R., Parthasarathy, A. & Hudson, A. O. Exploration of chemical biology approaches to facilitate the discovery and development of novel antibiotics. Front. Trop. Dis. 3, 845469 (2022).

    Article 

    Google Scholar 

  51. Silver, L. L. A gestalt approach to Gram-negative entry. Bioorg. Med. Chem. 24, 6379–6389 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  52. Yu, N. Y., Laird, M. R., Spencer, C. & Brinkman, F. S. PSORTdb — an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res. 39, D241–D244 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  53. Agoni, C., Olotu, F. A., Ramharack, P. & Soliman, M. E. Druggability and drug-likeness concepts in drug design: are biomodelling and predictive tools having their say? J. Mol. Model. 26, 120 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  54. Vukovic, S. & Huggins, D. J. Quantitative metrics for drug-target ligandability. Drug Discov. Today 23, 1258–1266 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  55. Sheridan, R. P., Maiorov, V. N., Holloway, M. K., Cornell, W. D. & Gao, Y.-D. Drug-like density: a method of quantifying the “bindability” of a protein target based on a very large set of pockets and drug-like ligands from the protein data bank. J. Chem. Inf. Model. 50, 2029–2040 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  56. Paananen, J. & Fortino, V. An omics perspective on drug target discovery platforms. Brief. Bioinform. 21, 1937–1953 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  57. Coyle, J. & Walser, R. Applied biophysical methods in fragment-based drug discovery. SLAS Discov. 25, 471–490 (2020).

    Article 
    PubMed 

    Google Scholar 

  58. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  59. Canning, P., Birchall, K., Kettleborough, C. A., Merritt, A. & Coombs, P. J. Fragment-based target screening as an empirical approach to prioritising targets: a case study on antibacterials. Drug Discov. Today 25, 2030–2037 (2020).

    Article 
    CAS 

    Google Scholar 

  60. Machutta, C. A. et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat. Commun. 8, 16081 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  61. Sutterlin, H. A., Malinverni, J. C., Lee, S. H., Balibar, C. J. & Roemer, T. in Antibacterials Vol.1 (eds Fisher, J. F., Mobashery, S. & Miller, M. J.) 1–29 (Springer, 2018).

  62. Serral, F. et al. From genome to drugs: new approaches in antimicrobial discovery. Front. Pharmacol. 12, 647060 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  63. Privalsky, T. M. et al. Prospects for antibacterial discovery and development. J. Am. Chem. Soc. 143, 21127–21142 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  64. Lin, Z. et al. Evolutionary-scale prediction of atomic level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  65. Wua, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).

  66. Suárez-Rivero, J. M. et al. Mitochondria and antibiotics: for good or for evil? Biomolecules 11, 1050 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  67. Hoogstraten, C. A., Lyon, J. J., Smeitink, J. A. M., Russel, F. G. M. & Schirris, T. J. J. Time to change: a systems pharmacology approach to disentangle mechanisms of drug-induced mitochondrial toxicity. Pharmacol. Rev. 75, 463–486 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  68. Darby, E. M. et al. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 21, 280–295 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  69. Lewis, K. The science of antibiotic discovery. Cell 181, 29–45 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  70. Silver, L. L. Appropriate targets for antibacterial drugs. Cold Spring Harb. Perspect. Med. 6, a030239 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  71. O’Dwyer, K. et al. Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob. Agents Chemother. 59, 289–298 (2015).

    Article 
    PubMed 

    Google Scholar 

  72. Purnapatre, K. P. et al. In vitro and in vivo activities of DS86760016, a novel leucyl-tRNA synthetase inhibitor for Gram-negative pathogens. Antimicrob. Agents Chemother. 62, e01987-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  73. Min, S. et al. Frequency of spontaneous resistance to peptide deformylase inhibitor GSK1322322 in Haemophilus influenzae, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. Antimicrob. Agents Chemother. 59, 4644–4652 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  74. Apfel, C. M. et al. Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. 45, 1058–1064 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  75. Redgrave, L. S., Sutton, S. B., Webber, M. A. & Piddock, L. J. V. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol. 22, 438–445 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  76. Silver, L. L. Multi-targeting by monotherapeutic antibacterials. Nat. Rev. Drug Discov. 6, 41–55 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  77. Martin, J. K. II et al. A dual-mechanism antibiotic kills Gram-negative bacteria and avoids drug resistance. Cell 181, 1518–1532 e14 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  78. Theuretzbacher, U. Dual-mechanism antibiotics. Nat. Microbiol. 5, 984–985 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  79. Liu, D. Y. et al. Collateral sensitivity profiling in drug-resistant Escherichia coli identifies natural products suppressing cephalosporin resistance. Nat. Commun. 14, 1976 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  80. Caveney, N. A. et al. Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli. Nat. Commun. 10, 1849 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  81. Moradigaravand, D. et al. Prediction of antibiotic resistance in Escherichia coli from large-scale pan-genome data. PLoS Comput. Biol. 14, e1006258 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  82. Zgurskaya, H. I. & Rybenkov, V. V. Permeability barriers of Gram-negative pathogens. Ann. NY Acad. Sci. 1459, 5–18 (2020).

    Article 
    PubMed 

    Google Scholar 

  83. Walker, S. S. & Black, T. A. Are outer-membrane targets the solution for MDR Gram-negative bacteria? Drug Discov. Today 26, 2152–2158 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  84. Raetz, C. R. et al. Discovery of new biosynthetic pathways: the lipid A story. J. Lipid Res. 50, S103–S108 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  85. Lehman, K. M. & Grabowicz, M. Countering Gram-negative antibiotic resistance: recent progress in disrupting the outer membrane with novel therapeutics. Antibiotics 8, 163 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  86. Horne, J. E., Brockwell, D. J. & Radford, S. E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem. 295, 10340–10367 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  87. Choi, U. & Lee, C. R. Antimicrobial agents that inhibit the outer membrane assembly machines of Gram-negative bacteria. J. Microbiol. Biotechnol. 29, 1–10 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  88. Kovacs-Simon, A., Titball, R. W. & Michell, S. L. Lipoproteins of bacterial pathogens. Infect. Immun. 79, 548–561 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  89. Li, Y. et al. Identification of a compound that inhibits the growth of Gram-negative bacteria by blocking BamA–BamD interaction. Front. Microbiol. 11, 1252 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  90. Ghequire, M. G. K., Swings, T., Michiels, J., Buchanan, S. K. & De Mot, R. Hitting with a BAM: selective killing by lectin-like bacteriocins. mBio 9, e02138-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  91. Storek, K. M. et al. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc. Natl Acad. Sci. USA 115, 3692–3697 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  92. Robinson, J. A. Folded synthetic peptides and other molecules targeting outer membrane protein complexes in Gram-negative bacteria. Front. Chem. 7, 45 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  93. Hart, E. M. et al. A small-molecule inhibitor of BamA impervious to efflux and the outer membrane permeability barrier. Proc. Natl Acad. Sci. USA 116, 21748–21757 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  94. Wade, N. et al. Synthesis and structure–activity studies of β-barrel assembly machine complex inhibitor MRL-494. ACS Infect. Dis. 8, 2242–2252 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  95. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  96. Kaur, H. et al. The antibiotic darobactin mimics a β-strand to inhibit outer membrane insertase. Nature 593, 125–129 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  97. Miller, R. D. et al. Computational identification of a systemic antibiotic for Gram-negative bacteria. Nat. Microbiol. 7, 1661–1672 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  98. Luther, A. et al. Chimeric peptidomimetic antibiotics against Gram-negative bacteria. Nature 576, 452–458 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  99. Groß, S. et al. Improved broad-spectrum antibiotics against Gram-negative pathogens via darobactin biosynthetic pathway engineering. Chem. Sci. 12, 11882–11893 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  100. Wuisan, Z. G., Kresna, I. D. M., Bohringer, N., Lewis, K. & Schaberle, T. F. Optimization of heterologous darobactin A expression and identification of the minimal biosynthetic gene cluster. Metab. Eng. 66, 123–136 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  101. Seyfert, C. E. et al. Darobactins exhibiting superior antibiotic activity by cryo-EM structure guided biosynthetic engineering. Angew. Chem. Int. Ed. 62, e202214094 (2023).

    Article 
    CAS 

    Google Scholar 

  102. Steenhuis, M. et al. Combining cell envelope stress reporter assays in a screening approach to identify BAM complex inhibitors. ACS Infect. Dis. 7, 2250–2263 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  103. Kaushik, S., He, H. & Dalbey, R. E. Bacterial signal peptides – navigating the journey of proteins. Front. Physiol. 13, 933153 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  104. Rao, C. V. S., De Waelheyns, E., Economou, A. & Anné, J. Antibiotic targeting of the bacterial secretory pathway. Biochim. Biophys. Acta 1843, 1762–1783 (2014).

    Article 

    Google Scholar 

  105. Ambroziak, P., Rzepka, I. & Skorko-Glonek, J. SecA – a multidomain and multitask bacterial export protein. Acta Biochim. Pol. 68, 427–436 (2021).

    CAS 
    PubMed 

    Google Scholar 

  106. De Waelheyns, E. et al. Identification of small-molecule inhibitors against SecA by structure-based virtual ligand screening. J. Antibiot. 68, 666–673 (2015).

    Article 

    Google Scholar 

  107. Jin, J. et al. SecA inhibitors as potential antimicrobial agents: differential actions on SecA-only and SecA–SecYEG protein-conducting channels. FEMS Microbiol. Lett. 365, fny145 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  108. Alksne, L. E. et al. Identification and analysis of bacterial protein secretion inhibitors utilizing a SecA–LacZ reporter fusion system. Antimicrob. Agents Chemother. 44, 1418–1427 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  109. Seinen, A.-B., Spakman, D., van Oijen, A. M. & Driessen, A. J. M. Cellular dynamics of the SecA ATPase at the single molecule level. Sci. Rep. 11, 1433 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  110. Braunstein, M., Bensing, B. A. & Sullam, P. M. The two distinct types of SecA2-dependent export systems. Microbiol. Spectr. 7, https://doi.org/10.1128/microspec.PSIB-0025-2018 (2019).

  111. Jin, J. et al. Using chemical probes to assess the feasibility of targeting SecA for developing antimicrobial agents against Gram-negative bacteria. ChemMedChem 11, 2511–2521 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  112. Segers, K. & Anné, J. Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. Chem. Biol. 18, 685–698 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  113. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type I signal peptidases. Protein Sci. 6, 1129–1138 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  114. Auclair, S. M., Bhanu, M. K. & Kendall, D. A. Signal peptidase I: cleaving the way to mature proteins. Protein Sci. 21, 13–25 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  115. Personne, Y., Curtis, M. A., Wareham, D. W. & Waite, R. D. Activity of the type I signal peptidase inhibitor MD3 against multidrug-resistant Gram-negative bacteria alone and in combination with colistin. J. Antimicrob. Chemother. 69, 3236–3243 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  116. De Rosa, M. et al. Design, synthesis and in vitro biological evaluation of oligopeptides targeting E. coli type I signal peptidase (LepB). Bioorg. Med. Chem. 25, 897–911 (2017).

    Article 
    PubMed 

    Google Scholar 

  117. Smith, P. A. & Romesberg, F. E. Mechanism of action of the arylomycin antibiotics and effects of signal peptidase I inhibition. Antimicrob. Agents Chemother. 56, 5054–5060 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  118. Barbosa, M. D. F. S. et al. Regulated expression of the Escherichia coli lepB gene as a tool for cellular testing of antimicrobial compounds that inhibit signal peptidase i in vitro. Antimicrob. Agents Chemother. 46, 3549–3554 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  119. Craney, A. & Romesberg, F. E. The inhibition of type I bacterial signal peptidase: biological consequences and therapeutic potential. Bioorg. Med. Chem. Lett. 25, 4761–4766 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  120. Therien, A. G. et al. Broadening the spectrum of beta-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob. Agents Chemother. 56, 4662–4670 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  121. Gao, M., Nakajima, A. D. & Skolnick, J. Deep learning-driven insights into super protein complexes for outer membrane protein biogenesis in bacteria. eLife 11, e82885 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  122. Smith, P. A. et al. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature 561, 189–194 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  123. Girgis, H. S. et al. Single-molecule nanopore sequencing reveals extreme target copy number heterogeneity in arylomycin-resistant mutants. Proc. Natl Acad. Sci. USA 118, e2021958118 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  124. Bhaskar, B. V. et al. Structure-based virtual screening of Pseudomonas aeruginosa LpxA inhibitors using pharmacophore-based approach. Biomolecules 10, 266 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  125. Sacco, M. D. et al. Structure-based ligand design targeting Pseudomonas aeruginosa LpxA in lipid A biosynthesis. ACS Infect. Dis. 8, 1231–1240 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  126. Ma, X. et al. Structural and biological basis of small molecule inhibition of Escherichia coli LpxD acyltransferase essential for lipopolysaccharide biosynthesis. ACS Infect. Dis. 6, 1480–1489 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  127. Badger, J. et al. Structure determination of LpxD from the lipopolysaccharide-synthesis pathway of Acinetobacter baumannii. Acta Crystallogr. F 69, 6–9 (2013).

    Article 
    CAS 

    Google Scholar 

  128. Mdluli, K. E. et al. Molecular validation of LpxC as an antibacterial drug target in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 50, 2178–2184 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  129. Ryan, M. D. et al. Discovery of novel UDP-N-Acetylglucosamine acyltransferase (LpxA) inhibitors with activity against Pseudomonas aeruginosa. J. Med. Chem. 64, 14377–14425 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  130. Erwin, A. L. Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme LpxC. Cold Spring Harb. Perspect. Med. 6, ea025304 (2016).

    Article 

    Google Scholar 

  131. Zhou, P. & Hong, J. Structure- and ligand-dynamics-based design of novel antibiotics targeting lipid A enzymes LpxC and LpxH in Gram-negative bacteria. Acc. Chem. Res. 54, 1623–1634 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  132. Panchaud, P. et al. Optimization of LpxC inhibitor lead compounds focusing on efficacy and formulation for high dose intravenous administration. J. Med. Chem. 63, 88–102 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  133. Surivet, J. P. et al. Discovery of novel inhibitors of LpxC displaying potent in vitro activity against Gram-negative bacteria. J. Med. Chem. 63, 66–87 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  134. Krause, K. M. et al. Potent LpxC inhibitors with in vitro activity against multidrug-resistant Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 63, e00977–e01019 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  135. Cohen, F. et al. Optimization of LpxC inhibitors for antibacterial activity and cardiovascular safety. ChemMedChem 14, 1560–1572 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  136. Ahmad, S. et al. Subtractive genomics, molecular docking and molecular dynamics simulation revealed LpxC as a potential drug target against multi-drug resistant Klebsiella pneumoniae. Interdiscip. Sci. 11, 508–526 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  137. Tomaras, A. P. et al. LpxC inhibitors as new antibacterial agents and tools for studying regulation of lipid A biosynthesis in Gram-negative pathogens. mBio 5, e01551-14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  138. Yamada, Y. et al. Fragment-based discovery of novel non-hydroxamate LpxC inhibitors with antibacterial activity. J. Med. Chem. 63, 14805–14820 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  139. Pal, S. K. & Kumar, S. LpxC (UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase) inhibitors: a long path explored for potent drug design. Int. J. Biol. Macromol. 234, 122960 (2023).

    Article 

    Google Scholar 

  140. Yoshida, I., Takata, I., Fujita, K., Takashima, H. & Sugiyama, H. TP0586532, a novel non-hydroxamate LpxC inhibitor: potentiating effect on in vitro activity of meropenem against carbapenem-resistant Enterobacteriaceae. Microbiol. Spectr. 10, e0082822 (2022).

    Article 
    PubMed 

    Google Scholar 

  141. Zoghlami, M., Oueslati, M., Basharat, Z., Sadfi-Zouaoui, N. & Messaoudi, A. Inhibitor assessment against the LpxC enzyme of antibiotic-resistant Acinetobacter baumannii using virtual screening, dynamics simulation, and in vitro assays. Mol. Inform. 42, e2200061 (2023).

    Article 
    PubMed 

    Google Scholar 

  142. Furuya, T. et al. N-Hydroxyformamide LpxC inhibitors, their in vivo efficacy in a mouse Escherichia coli infection model, and their safety in a rat hemodynamic assay. Bioorg. Med. Chem. 28, 115826 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  143. Lin, L. et al. Inhibition of LpxC protects mice from resistant Acinetobacter baumannii by modulating inflammation and enhancing phagocytosis. mBio 3, e00312–e00412 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  144. Emiola, A., George, J. & Andrews, S. S. A complete pathway model for lipid a biosynthesis in Escherichia coli. PLoS ONE 10, e0121216 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  145. Jones, A. K. et al. Mutations reducing in vitro susceptibility to novel LpxC inhibitors in Pseudomonas aeruginosa and interplay of efflux and nonefflux mechanisms. Antimicrob. Agents Chemother. 64, 17–27 (2019).

    Article 

    Google Scholar 

  146. Niu, Z. et al. Small molecule LpxC inhibitors against Gram-negative bacteria: advances and future perspectives. Eur. J. Med. Chem. 253, 115326 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  147. Kroeck, K. G. et al. Discovery of dual-activity small-molecule ligands of Pseudomonas aeruginosa LpxA and LpxD using SPR and X-ray crystallography. Sci. Rep. 9, 15450 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  148. Han, W. et al. Two distinct mechanisms of inhibition of LpxA acyltransferase essential for lipopolysaccharide biosynthesis. J. Am. Chem. Soc. 142, 4445–4455 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  149. Nayar, A. S. et al. Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay. J. Bacteriol. 197, 1726–1734 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  150. Kwak, S. H. et al. Development of LpxH inhibitors chelating the active site dimanganese metal cluster of LpxH. ChemMedChem 18, e202300023 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  151. Bohl, T. E. et al. The substrate-binding cap of the UDP-diacylglucosamine pyrophosphatase LpxH is highly flexible, enabling facile substrate binding and product release. J. Biol. Chem. 293, 7969–7981 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  152. Bonifer, C. & Glaubitz, C. MsbA: an ABC transporter paradigm. Biochem. Soc. Trans. 49, 2917–2927 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  153. Gorzelak, P., Klein, G. & Raina, S. Molecular basis of essentiality of early critical steps in the lipopolysaccharide biogenesis in Escherichia coli K-12: requirement of MsbA, cardiolipin, LpxL, LpxM and GcvB. Int. J. Mol. Sci. 22, 5099 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  154. Becker, J. P., Depret, G., Van Bambeke, F., Tulkens, P. M. & Prévost, M. Molecular models of human P-glycoprotein in two different catalytic states. BMC Struct. Biol. 9, 3 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  155. Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C. & Raetz, C. R. H. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273, 12466–12475 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  156. Ghanei, H., Abeyrathne, P. D. & Lam, J. S. Biochemical characterization of MsbA from Pseudomonas aeruginosa. J. Biol. Chem. 282, 26939–26947 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  157. Zhang, G. et al. Cell-based screen for discovering lipopolysaccharide biogenesis inhibitors. Proc. Natl Acad. Sci. USA 115, 6834–6839 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  158. Verma, V. A. et al. Discovery of inhibitors of the lipopolysaccharide transporter MsbA: from a screening hit to potent wild-type Gram-negative activity. J. Med. Chem. 65, 4085–4120 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  159. Ho, J. M., Bakkalbasi, E., Söll, D. & Miller, C. A. Drugging tRNA aminoacylation. RNA Biol. 15, 667–677 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  160. Alexander, M. K. et al. Disrupting Gram-negative bacterial outer membrane biosynthesis through inhibition of the lipopolysaccharide transporter MsbA. Antimicrob. Agents Chemother. 62, e01142-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  161. Moura, E. C. C. M. et al. Thanatin impairs lipopolysaccharide transport complex assembly by targeting LptC–LptA interaction and decreasing LptA stability. Front. Microbiol. 11, 909 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  162. Simpson, B. W. & Trent, M. S. Pushing the envelope: LPS modifications and their consequences. Nat. Rev. Microbiol. 17, 403–416 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  163. Hicks, G. & Jia, Z. Structural basis for the lipopolysaccharide export activity of the bacterial lipopolysaccharide transport system. Int. J. Mol. Sci. 19, 2680 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  164. Botos, I. et al. Structural and functional characterization of the LPS transporter LptDE from Gram-negative pathogens. Structure 24, 965–976 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  165. Storek, K. M. et al. Massive antibody discovery used to probe structure–function relationships of the essential outer membrane protein LptD. eLife 8, e46258 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  166. Martin-Loeches, I., Dale, G. E. & Torres, A. Murepavadin: a new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther. 16, 259–268 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  167. Wach, A., Dembowsky, K. & Dale, G. E. Pharmacokinetics and safety of intravenous murepavadin infusion in healthy adult subjects administered single and multiple ascending doses. Antimicrob. Agents Chemother. 62, e02355-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  168. Romano, K. P. et al. Mutations in pmrB confer cross-resistance between the LptD inhibitor POL7080 and colistin in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 63, e00511-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  169. Bollati, M. et al. Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from Pseudomonas aeruginosa. FEBS J. 282, 1980–1997 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  170. Fernández-Piñar, R. et al. In vitro and in vivo screening for novel essential cell-envelope proteins in Pseudomonas aeruginosa. Sci. Rep. 5, 17593 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  171. Sinha, S., Dhanabal, V. B., Sperandeo, P., Polissi, A. & Bhattacharjya, S. Linking dual mode of action of host defense antimicrobial peptide thanatin: structures, lipopolysaccharide and LptA(m) binding of designed analogs. Biochim. Biophys. Acta 1864, 183839 (2022).

    Article 
    CAS 

    Google Scholar 

  172. Dai, X. et al. Identification of a small molecule that inhibits the interaction of LPS transporters LptA and LptC. Antibiotics 11, 1385 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  173. Schuster, M. et al. Peptidomimetic antibiotics disrupt the lipopolysaccharide transport bridge of drug-resistant Enterobacteriaceae. Sci. Adv. 9, eadg3683 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  174. Dash, R. & Bhattacharjya, S. Thanatin: an emerging host defense antimicrobial peptide with multiple modes of action. Int. J. Mol. Sci. 22, 1–13 (2021).

    Article 

    Google Scholar 

  175. Oi, K. K., Moehle, K., Schuster, M. & Zerbe, O. Early molecular insights into thanatin analogues binding to A. baumannii LptA. Molecules 28, 4335 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  176. Konovalova, A., Kahne, D. E. & Silhavy, T. J. Outer membrane biogenesis. Annu. Rev. Microbiol. 71, 539–556 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  177. Narita, S. I. & Tokuda, H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim. Biophys. Acta 1862, 1414–1423 (2017).

    Article 
    CAS 

    Google Scholar 

  178. Grabowicz, M. & Silhavy, T. J. Redefining the essential trafficking pathway for outer membrane lipoproteins. Proc. Natl Acad. Sci. USA 114, 4769–4774 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  179. Nickerson, N. N. et al. A novel inhibitor of the LolCDE ABC transporter essential for lipoprotein trafficking in Gram-negative bacteria. Antimicrob. Agents Chemother. 62, e02151-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  180. McLeod, S. M. et al. Small-molecule inhibitors of Gram-negative lipoprotein trafficking discovered by phenotypic screening. J. Bacteriol. 197, 1075–1082 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  181. Avis, T., Wilson, F. X., Khan, N., Mason, C. S. & Powell, D. J. Targeted microbiome-sparing antibiotics. Drug Discov. Today 26, 2198–2203 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  182. Diao, J. et al. Inhibition of Escherichia coli lipoprotein diacylglyceryl transferase is insensitive to resistance caused by deletion of Braun’s lipoprotein. J. Bacteriol. 203, e0014921 (2021).

    Article 
    PubMed 

    Google Scholar 

  183. Vogeley, L. et al. Structural basis of lipoprotein signal peptidase II action and inhibition by the antibiotic globomycin. Science 351, 876–880 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  184. Xia, J. et al. Bacterial lipoprotein biosynthetic pathway as a potential target for structure-based design of antibacterial agents. Curr. Med. Chem. 27, 1132–1150 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  185. El Arnaout, T. & Soulimane, T. Targeting lipoprotein biogenesis: considerations towards antimicrobials. Trends Biochem. Sci. 44, 701–715 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  186. Caldwell, T. A., Vickery, O. N., Colburn, J. D., Stansfeld, P. J. & Columbus, L. Conformational dynamics of the membrane enzyme LspA upon antibiotic and substrate binding. Biophys. J. 121, 2078–2083 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  187. Kitamura, S., Owensby, A., Wall, D. & Wolan, D. W. Lipoprotein signal peptidase inhibitors with antibiotic properties identified through design of a robust in vitro HT platform. Cell Chem. Biol. 25, 301–308 e12 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  188. Garland, K. et al. Optimization of globomycin analogs as novel Gram-negative antibiotics. Bioorg. Med. Chem. Lett. 30, 127419 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  189. Pantua, H. et al. Unstable mechanisms of resistance to inhibitors of Escherichia coli lipoprotein signal peptidase. mBio 11, e02018–e02020 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  190. Sauvage, E. & Terrak, M. Glycosyltransferases and transpeptidases/penicillin-binding proteins: valuable targets for new antibacterials. Antibiotics 5, 12 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  191. Ostash, B. & Walker, S. Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat. Prod. Rep. 27, 1594–1617 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  192. Galley, N. F., O’Reilly, A. M. & Roper, D. I. Prospects for novel inhibitors of peptidoglycan transglycosylases. Bioorg. Chem. 55, 16–26 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  193. den Blaauwen, T., Andreu, J. M. & Monasterio, O. Bacterial cell division proteins as antibiotic targets. Bioorg. Chem. 55, 27–38 (2014).

    Article 

    Google Scholar 

  194. Mohammadi, T. et al. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30, 1425–1432 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  195. Attaibi, M. & Den Blaauwen, T. An updated model of the divisome: regulation of the septal peptidoglycan synthesis machinery by the divisome. Int. J. Mol. Sci. 23, 3537 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  196. Park, Y., Taguchi, A., Baidin, V., Kahne, D. & Walker, S. A time-resolved FRET assay identifies a small molecule that inhibits the essential bacterial cell wall polymerase FtsW. Angew. Chem. Int. Ed. 62, e202301522 (2023).

    Article 
    CAS 

    Google Scholar 

  197. Hering, J., Dunevall, E., Ek, M. & Brändén, G. Structural basis for selective inhibition of antibacterial target MraY, a membrane-bound enzyme involved in peptidoglycan synthesis. Drug Discov. Today 23, 1426–1435 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  198. Kubra, K. T., Uddin, M. A. & Barabutis, N. Tunicamycin protects against LPS-induced lung injury. Pharmaceuticals 15, 134 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  199. Nakaya, T. et al. Synthesis of macrocyclic nucleoside antibacterials and their interactions with MraY. Nat. Commun. 13, 7575 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  200. Hakulinen, J. K. et al. MraY–antibiotic complex reveals details of tunicamycin mode of action. Nat. Chem. Biol. 13, 265–267 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  201. Mashalidis, E. H. et al. Chemical logic of MraY inhibition by antibacterial nucleoside natural products. Nat. Commun. 10, 2917 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  202. Ichikawa, S. Bridge between total synthesis of bioactive natural products and development of drug leads [Japanese]. Yakugaku Zasshi 142, 355–363 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  203. Silver, L. L. Viable screening targets related to the bacterial cell wall. Ann. NY Acad. Sci. 1277, 29–53 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  204. Amera, G. M. et al. Prioritization of Mur family drug targets against A. baumannii and identification of their homologous proteins through molecular phylogeny, primary sequence, and structural analysis. J. Genet. Eng. Biotechnol. 18, 33 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  205. Liang, H. et al. Elucidating the inhibition of peptidoglycan biosynthesis in Staphylococcus aureus by albocycline, a macrolactone isolated from Streptomyces maizeus. Bioorg. Med. Chem. 26, 3453–3460 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  206. Chang, C. M. et al. Avenaciolides: potential MurA-targeted inhibitors against peptidoglycan biosynthesis in methicillin-resistant Staphylococcus aureus (MRSA). J. Am. Chem. Soc. 137, 267–275 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  207. Hrast, M., Sosič, I., Sink, R. & Gobec, S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA–F. Bioorg. Chem. 55, 2–15 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  208. Hamilton, D. J. et al. Bromo-cyclobutenaminones as new covalent UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) inhibitors. Pharmaceuticals 13, 362 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  209. Gaur, V. & Bera, S. Recent developments on UDP-N-acetylmuramoyl-l-alanine-d-gutamate ligase (Mur D) enzyme for antimicrobial drug development: an emphasis on in-silico approaches. Curr. Res. Pharmacol. Drug Discov. 3, 100137 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  210. Kouidmi, I., Levesque, R. C. & Paradis-Bleau, C. The biology of Mur ligases as an antibacterial target. Mol. Microbiol. 94, 242–253 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  211. Jha, R. K. et al. Identification of promising molecules against MurD ligase from Acinetobacter baumannii: insights from comparative protein modelling, virtual screening, molecular dynamics simulations and MM/PBSA analysis. J. Mol. Model. 26, 304 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  212. Ranjan Sahoo, C. et al. Coumarin derivatives as promising antibacterial agent(s). Arab. J. Chem. 14, 102922 (2021).

    Article 
    CAS 

    Google Scholar 

  213. Lock, R. L. & Harry, E. J. Cell-division inhibitors: new insights for future antibiotics. Nat. Rev. Drug Discov. 7, 324–338 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  214. De Pereda, J. M., Leynadier, D., Evangelio, J. A., Chacón, P. & Andreu, J. M. Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. Biochemistry 35, 14203–14215 (1996).

    Article 
    PubMed 

    Google Scholar 

  215. Ohashi, Y. et al. The lethal effect of a benzamide derivative, 3-methoxybenzamide, can be suppressed by mutations within a cell division gene, ftsZ, in Bacillus subtilis. J. Bacteriol. 181, 1348–1351 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  216. Miguel, A. et al. Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species. PLoS Comput. Biol. 11, e1004117 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  217. Kaul, M. et al. TXA709, an FtsZ-targeting benzamide prodrug with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 59, 4845–4855 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  218. Stokes, N. R. et al. Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ. Bioorg. Med. Chem. Lett. 24, 353–359 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  219. Fujita, J. et al. Structural flexibility of an inhibitor overcomes drug resistance mutations in Staphylococcus aureus FtsZ. ACS Chem. Biol. 12, 1947–1955 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  220. Rosado-Lugo, J. D. et al. Evaluation of 2,6-difluoro-3-(oxazol-2-ylmethoxy)benzamide chemotypes as Gram-negative FtsZ inhibitors. J. Antibiot. 75, 385–395 (2022).

    Article 
    CAS 

    Google Scholar 

  221. Andreu, J. M., Huecas, S., Araujo-Bazan, L., Vazquez-Villa, H. & Martin-Fontecha, M. The search for antibacterial inhibitors targeting cell division protein FtsZ at its nucleotide and allosteric binding sites. Biomedicines 10, 1825 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  222. Du, R. L. et al. Discovery of FtsZ inhibitors by virtual screening as antibacterial agents and study of the inhibition mechanism. RSC Med. Chem. 13, 79–89 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  223. Naz, F. et al. Screening of plant-based natural compounds as an inhibitor of FtsZ from Salmonella Typhi using the computational, biochemical and in vitro cell-based studies. Int. J. Biol. Macromol. 219, 428–437 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  224. Slade, J. A., Brockett, M., Singh, R., Liechti, G. W. & Maurelli, A. T. Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly. PLoS Pathog. 15, e1008078 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  225. Sanders, S. et al. Growth medium-dependent antimicrobial activity of early stage MEP pathway inhibitors. PLoS ONE 13, e0197638 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  226. Wang, X. & Dowd, C. S. The methylerythritol phosphate pathway: promising drug targets in the fight against tuberculosis. ACS Infect. Dis. 4, 278–290 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  227. Singh, K. S. et al. IspH inhibitors kill Gram-negative bacteria and mobilize immune clearance. Nature 589, 597–602 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  228. Allamand, A., Piechowiak, T., Lièvremont, D., Rohmer, M. & Grosdemange-Billiard, C. The multifaceted mep pathway: towards new therapeutic perspectives. Molecules 28, 1403 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  229. Knak, T. et al. Over 40 years of fosmidomycin drug research: a comprehensive review and future opportunities. Pharmaceuticals 15, 1553 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  230. Jobelius, H., Bianchino, G. I., Borel, F., Chaignon, P. & Seemann, M. The reductive dehydroxylation catalyzed by IspH, a source of inspiration for the development of novel anti-infectives. Molecules 27, 708 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  231. Zhang, Y. M., White, S. W. & Rock, C. O. Inhibiting bacterial fatty acid synthesis. J. Biol. Chem. 281, 17541–17544 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  232. Allahverdiyev, A. M. et al. The use of platensimycin and platencin to fight antibiotic resistance. Infect. Drug Resist. 6, 99 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  233. Bibens, L., Becker, J.-P., Dassonville-Klimpt, A. & Sonnet, P. A review of fatty acid biosynthesis enzyme inhibitors as promising antimicrobial drugs. Pharmaceuticals 16, 425 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  234. Parker, E. N. et al. An iterative approach guides discovery of the FabI inhibitor fabimycin, a late-stage antibiotic candidate with in vivo efficacy against drug-resistant Gram-negative infections. ACS Cent. Sci. 8, 1145–1158 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  235. Yao, J. & Rock, C. O. Resistance mechanisms and the future of bacterial Enoyl-Acyl carrier protein reductase (FabI) antibiotics. Cold Spring Harb. Perspect. Med. 6, a027045 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  236. Leonardi, R. & Jackowski, S. Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus 2, https://doi.org/10.1128/ecosalplus.3.6.3.4 (2007).

  237. Chiarelli, L. R. et al. A multitarget approach to drug discovery inhibiting Mycobacterium tuberculosis PyrG and PanK. Sci. Rep. 8, 3187 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  238. Shapiro, J. A. et al. Identification of specific and nonspecific inhibitors of Bacillus anthracis type III pantothenate kinase (PanK). ChemMedChem 14, 78–82 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  239. Moolman, W. J., de Villiers, M. & Strauss, E. Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development. Biochem. Soc. Trans. 42, 1080–1086 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  240. Miller, J. R. et al. Phosphopantetheine adenylyltransferase from Escherichia coli: investigation of the kinetic mechanism and role in regulation of coenzyme A biosynthesis. J. Bacteriol. 189, 8196–8205 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  241. Gupta, A., Sharma, P., Singh, T. P. & Sharma, S. Phosphopantetheine adenylyltransferase: a promising drug target to combat antibiotic resistance. Biochim. Biophys. Acta 1869, 140566 (2021).

    Article 
    CAS 

    Google Scholar 

  242. de Jonge, B. L. et al. Discovery of inhibitors of 4′-phosphopantetheine adenylyltransferase (PPAT) to validate PPAT as a target for antibacterial therapy. Antimicrob. Agents Chemother. 57, 6005–6015 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  243. Sibon, O. C. & Strauss, E. Coenzyme A: to make it or uptake it? Nat. Rev. Mol. Cell Biol. 17, 605–606 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  244. Rath, C. M. et al. Optimization of CoaD inhibitors against Gram-negative organisms through targeted metabolomics. ACS Infect. Dis. 4, 391–402 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  245. Skepper, C. K. et al. Discovery and optimization of phosphopantetheine adenylyltransferase inhibitors with Gram-negative antibacterial activity. J. Med. Chem. 61, 3325–3349 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  246. Motika, S. E. et al. Gram-negative antibiotic active through inhibition of an essential riboswitch. J. Am. Chem. Soc. 142, 10856–10862 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  247. Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  248. Howe, J. A. et al. Atomic resolution mechanistic studies of ribocil: a highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA Biol. 13, 946–954 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  249. Panchal, V. & Brenk, R. Riboswitches as drug targets for antibiotics. Antibiotics 10, 45 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  250. Wang, H. et al. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem. Biol. 24, 576–588.e6 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  251. Sirithanakorn, C. & Cronan, J. E. Biotin, a universal and essential cofactor: synthesis, ligation and regulation. FEMS Microbiol. Rev. 45, fuab003 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  252. Park, S. W. et al. Target-based identification of whole-cell active inhibitors of biotin biosynthesis in Mycobacterium tuberculosis. Chem. Biol. 22, 76–86 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  253. Zlitni, S., Ferruccio, L. F. & Brown, E. D. Metabolic suppression identifies new antibacterial inhibitors under nutrient limitation. Nat. Chem. Biol. 9, 796–804 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  254. Carfrae, L. A. et al. Mimicking the human environment in mice reveals that inhibiting biotin biosynthesis is effective against antibiotic-resistant pathogens. Nat. Microbiol. 5, 93–101 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  255. Ma, C., Yang, X. & Lewis, P. J. Bacterial transcription as a target for antibacterial drug development. Microbiol. Mol. Biol. Rev. 80, 139–160 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  256. Mosaei, H. & Harbottle, J. Mechanisms of antibiotics inhibiting bacterial RNA polymerase. Biochem. Soc. Trans. 47, 339–350 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  257. Nogales, E., Louder, R. K. & He, Y. Structural insights into the eukaryotic transcription initiation machinery. Annu. Rev. Biophys. 46, 59–83 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  258. Babakhani, F., Seddon, J. & Sears, P. Comparative microbiological studies of transcription inhibitors fidaxomicin and the rifamycins in Clostridium difficile. Antimicrob. Agents Chemother. 58, 2934–2937 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  259. Vior, N. M. et al. Discovery and biosynthesis of the antibiotic bicyclomycin in distantly related bacterial classes. Appl. Environ. Microbiol. 84, e02828–17 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  260. Eidem, T. M., Roux, C. M. & Dunman, P. M. RNA decay: a novel therapeutic target in bacteria. Wiley Interdiscip. Rev. RNA 3, 443–454 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  261. Mackie, G. A. RNase E: at the interface of bacterial RNA processing and decay. Nat. Rev. Microbiol. 11, 45–57 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  262. Kime, L. et al. The first small-molecule inhibitors of members of the ribonuclease E family. Sci. Rep. 5, 8028 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  263. Mardle, C. E. et al. Identification and analysis of novel small molecule inhibitors of RNase E: implications for antibacterial targeting and regulation of RNase E. Biochem. Biophys. Rep. 23, 100773 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  264. Tsai, Y. C. et al. Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli. Nucleic Acids Res. 40, 10417–10431 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  265. Prats-Ejarque, G. et al. Structure-based design of an RNase chimera for antimicrobial therapy. Int. J. Mol. Sci./ 23, 95 (2021).

    Article 
    PubMed 

    Google Scholar 

  266. Chopra, S. & Reader, J. tRNAs as antibiotic targets. Int. J. Mol. Sci. 16, 321–349 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  267. de Crécy-Lagard, V. & Jaroch, M. Functions of bacterial tRNA modifications: from ubiquity to diversity. Trends Microbiol. 29, 41–53 (2021).

    Article 
    PubMed 

    Google Scholar 

  268. Masuda, I. et al. tRNA methylation is a global determinant of bacterial multi-drug resistance. Cell Syst. 8, 302–314.e8 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  269. Zhong, W. et al. Thienopyrimidinone derivatives that inhibit bacterial tRNA (guanine37-N(1))-methyltransferase (TrmD) by restructuring the active site with a tyrosine-flipping mechanism. J. Med. Chem. 62, 7788–7805 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  270. Goto-Ito, S., Ito, T. & Yokoyama, S. Trm5 and TrmD: two enzymes from distinct origins catalyze the identical tRNA modification, m(1)G37. Biomolecules 7, 32 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  271. Jaroensuk, J. et al. Crystal structure and catalytic mechanism of the essential m1G37 tRNA methyltransferase TrmD from Pseudomonas aeruginosa. RNA 25, 1481–1496 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  272. Zhong, W. et al. Targeting the bacterial epitranscriptome for antibiotic development: discovery of novel tRNA-(N1G37) methyltransferase (TrmD) inhibitors. ACS Infect. Dis. 5, 326–335 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  273. Hill, P. J. et al. Selective inhibitors of bacterial t-RNA-(N1G37) methyltransferase (TrmD) that demonstrate novel ordering of the lid domain. J. Med. Chem. 56, 7278–7288 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  274. Pang, L., Weeks, S. D. & Van Aerschot, A. Aminoacyl-tRNA synthetases as valuable targets for antimicrobial drug discovery. Int. J. Mol. Sci. 22, 1750 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  275. Francklyn, C. S. & Mullen, P. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics. J. Biol. Chem. 294, 5365–5385 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  276. Cai, Z. et al. Design, synthesis, and proof-of-concept of triple-site inhibitors against aminoacyl-tRNA synthetases. J. Med. Chem. 65, 5800–5820 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  277. Harvey, K. L., Jarocki, V. M., Charles, I. G. & Djordjevic, S. P. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol. 10, 2351 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  278. Arenz, S. & Wilson, D. N. Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb. Perspect. Med. 6, a025361 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  279. Masschelein, J. et al. A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nat. Chem. 11, 906–912 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  280. Fields, F. R., Lee, S. W. & McConnell, M. J. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem. Pharmacol. 134, 74–86 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  281. Prajapati, J. D., Kleinekathöfer, U. & Winterhalter, M. How to enter a bacterium: bacterial porins and the permeation of antibiotics. Chem. Rev. 121, 5158–5192 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  282. Acosta-Gutiérrez, S. et al. Getting drugs into Gram-negative bacteria: rational rules for permeation through general porins. ACS Infect. Dis. 4, 1487–1498 (2018).

    Article 
    PubMed 

    Google Scholar 

  283. Davis, T. D., Gerry, C. J. & Tan, D. S. General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem. Biol. 9, 2535–2544 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  284. Richter, M. F. et al. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature 545, 299–304 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  285. Farha, M. A. & Brown, E. D. Unconventional screening approaches for antibiotic discovery. Ann. NY Acad. Sci. 1354, 54–66 (2015).

    Article 
    PubMed 

    Google Scholar 

  286. Dheman, N. et al. An analysis of antibacterial drug development trends in the united states, 1980–2019. Clin. Infect. Dis. 73, e4444–e4450 (2021).

    Article 
    PubMed 

    Google Scholar 

  287. Drakeman, D. & Oraiopoulos, N. The risk of de-risking innovation: optimal R&D strategies in ambiguous environments. Calif. Manag. Rev. 62, 42–63 (2020).

    Article 

    Google Scholar 

  288. Theuretzbacher, U., Baraldi, E., Ciabuschi, F. & Callegari, S. Challenges and shortcomings of antibacterial discovery projects. Clin. Microbiol. Infect. 29, 610–615 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  289. Cook, M. A. & Wright, G. D. The past, present, and future of antibiotics. Sci. Transl Med. 14, eabo7793 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  290. Jones, L. H. An industry perspective on drug target validation. Expert Opin. Drug Discov. 11, 623–625 (2016).

    Article 
    PubMed 

    Google Scholar 

  291. Zhu, F. et al. Update of TTD: therapeutic target database. Nucleic Acids Res. 38, D787–D791 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  292. Chen, L., Oughtred, R., Berman, H. M. & Westbrook, J. TargetDB: a target registration database for structural genomics projects. Bioinformatics 20, 2860–2862 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  293. Magarinos, M. P. et al. TDR targets: a chemogenomics resource for neglected diseases. Nucleic Acids Res. 40, D1118–D1127 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  294. Sosa, E. J. et al. Target-Pathogen: a structural bioinformatic approach to prioritize drug targets in pathogens. Nucleic Acids Res. 46, D413–D418 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  295. Le Guilloux, V., Schmidtke, P. & Tuffery, P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10, 168 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

Download references

Acknowledgements

The authors thank H.-K. Ropponen for help for searching target inhibitors in the literature, and L. Silver and L. Czaplewski for constructive feedback on content. Global Antibiotic Research and Development Partnership (GARDP) is currently funded by the governments of Australia, Germany, Japan, Monaco, The Netherlands, the Public Health Agency of Canada, South Africa, Switzerland, the United Kingdom, the Canton of Geneva, as well as the European Union, Wellcome Trust and private foundations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this article and approved the submitted version.

Corresponding author

Correspondence to
Laura J. V. Piddock.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Drug Discovery thanks Todd Black and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Prokaryotics pipeline:

Pipeline

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theuretzbacher, U., Blasco, B., Duffey, M. et al. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections.
Nat Rev Drug Discov (2023). https://doi.org/10.1038/s41573-023-00791-6

Download citation

  • Accepted: 15 August 2023

  • Published: 13 October 2023

  • DOI: https://doi.org/10.1038/s41573-023-00791-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Leave a Reply

Your email address will not be published. Required fields are marked *