Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of Diabetes Mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134(10):752–72.
Google Scholar
Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with Diabetes and chronic Kidney Disease. N Engl J Med. 2021;384(2):129–39.
Google Scholar
Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383(15):1425–35.
Google Scholar
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and Cardiovascular and renal events in type 2 Diabetes. N Engl J Med. 2017;377(7):644–57.
Google Scholar
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 Diabetes. N Engl J Med. 2019;380(4):347–57.
Google Scholar
Zelniker TA, Bonaca MP, Furtado RHM, Mosenzon O, Kuder JF, Murphy SA, et al. Effect of Dapagliflozin on Atrial Fibrillation in patients with type 2 Diabetes Mellitus: insights from the DECLARE-TIMI 58 Trial. Circulation. 2020;141(15):1227–34.
Google Scholar
Zhou Z, Jardine MJ, Li Q, Neuen BL, Cannon CP, de Zeeuw D, et al. Effect of SGLT2 inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease: results from the CREDENCE Trial and Meta-Analysis. Stroke. 2021;52(5):1545–56.
Google Scholar
Ouyang X, Wang J, Chen Q, Peng L, Li S, Tang X. Sodium-glucose cotransporter 2 inhibitor may not prevent atrial fibrillation in patients with Heart Failure: a systematic review. Cardiovasc Diabetol. 2023;22(1):124.
Google Scholar
Li HL, Lip GYH, Feng Q, Fei Y, Tse YK, Wu MZ, et al. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: a systematic review and meta-analysis. Cardiovasc Diabetol. 2021;20(1):100.
Google Scholar
Cowie MR, Fisher M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol. 2020;17(12):761–72.
Google Scholar
Ferrannini E, Mark M, Mayoux E. CV Protection in the EMPA-REG OUTCOME Trial: a thrifty substrate hypothesis. Diabetes Care. 2016;39(7):1108–14.
Google Scholar
Kappel BA, Lehrke M, Schütt K, Artati A, Adamski J, Lebherz C, et al. Effect of Empagliflozin on the metabolic signature of patients with type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation. 2017;136(10):969–72.
Google Scholar
Katano S, Yano T, Kouzu H, Nagaoka R, Numazawa R, Yamano K, et al. Elevated circulating level of β-aminoisobutyric acid (BAIBA) in Heart Failure patients with type 2 Diabetes receiving sodium-glucose cotransporter 2 inhibitors. Cardiovasc Diabetol. 2022;21(1):285.
Google Scholar
Szekeres Z, Toth K, Szabados E. The effects of SGLT2 inhibitors on lipid metabolism. Metabolites. 2021;11(2).
Sánchez-García A, Simental-Mendía M, Millán-Alanís JM, Simental-Mendía LE. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: a systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol Res. 2020;160:105068.
Google Scholar
Calapkulu M, Cander S, Gul OO, Ersoy C. Lipid profile in type 2 diabetic patients with new dapagliflozin treatment; actual clinical experience data of six months retrospective lipid profile from single center. Diabetes Metab Syndr. 2019;13(2):1031–4.
Google Scholar
Fadini GP, Bonora BM, Zatti G, Vitturi N, Iori E, Marescotti MC, et al. Effects of the SGLT2 inhibitor dapagliflozin on HDL cholesterol, particle size, and cholesterol efflux capacity in patients with type 2 Diabetes: a randomized placebo-controlled trial. Cardiovasc Diabetol. 2017;16(1):42.
Google Scholar
Katsuyama H, Hamasaki H, Adachi H, Moriyama S, Kawaguchi A, Sako A, et al. Effects of Sodium-glucose cotransporter 2 inhibitors on metabolic parameters in patients with type 2 Diabetes: a chart-based analysis. J Clin Med Res. 2016;8(3):237–43.
Google Scholar
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA. 2017;318(19):1925–6.
Google Scholar
Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Oxford University Press; 2015. pp. 379–88.
Li Y, Gray A, Xue L, Farb MG, Ayalon N, Andersson C, et al. Metabolomic Profiles, Ideal Cardiovascular Health, and risk of Heart Failure and Atrial Fibrillation: insights from the Framingham Heart Study. J Am Heart Assoc. 2023;12(12):e028022.
Google Scholar
Qin X, Zhang Y, Zheng Q. Metabolic inflexibility as a pathogenic basis for Atrial Fibrillation. Int J Mol Sci. 2022;23(15).
Lu C, Liu C, Mei D, Yu M, Bai J, Bao X, et al. Comprehensive metabolomic characterization of atrial fibrillation. Front Cardiovasc Med. 2022;9:911845.
Google Scholar
Guan B, Li X, Xue W, Tse G, Waleed KB, Liu Y, et al. Blood lipid profiles and risk of atrial fibrillation: a systematic review and meta-analysis of cohort studies. J Clin Lipidol. 2020;14(1):133–42e3.
Google Scholar
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA, et al. Strengthening the reporting of Observational studies in Epidemiology using mendelian randomization: the STROBE-MR Statement. JAMA. 2021;326(16):1614–21.
Google Scholar
The GTEx. Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.
Google Scholar
Võsa U, Claringbould A, Westra HJ, Bonder MJ, Deelen P, Zeng B, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet. 2021;53(9):1300–10.
Google Scholar
Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, et al. Combining evidence from mendelian randomization and colocalization: review and comparison of approaches. Am J Hum Genet. 2022;109(5):767–82.
Google Scholar
Bakker MK, van Straten T, Chong M, Paré G, Gill D, Ruigrok YM. Anti-epileptic drug target perturbation and intracranial Aneurysm risk: mendelian randomization and colocalization study. Stroke. 2023;54(1):208–16.
Google Scholar
Ritchie SC, Surendran P, Karthikeyan S, Lambert SA, Bolton T, Pennells L, et al. Quality control and removal of technical variation of NMR metabolic biomarker data in ~ 120,000 UK Biobank participants. Sci Data. 2023;10(1):64.
Google Scholar
Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv. 2020. 2020.08.10.244293.
Christophersen IE, Rienstra M, Roselli C, Yin X, Geelhoed B, Barnard J, et al. Large-scale analyses of common and rare variants identify 12 new loci associated with atrial fibrillation. Nat Genet. 2017;49(6):946–52.
Google Scholar
Mahajan A, Spracklen CN, Zhang W, Ng MCY, Petty LE, Kitajima H, et al. Multi-ancestry genetic study of type 2 Diabetes highlights the power of diverse populations for discovery and translation. Nat Genet. 2022;54(5):560–72.
Google Scholar
Verbanck M, Chen CY, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and Diseases. Nat Genet. 2018;50(5):693–8.
Google Scholar
Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. Improving the visualization, interpretation and analysis of two-sample summary data mendelian randomization via the Radial plot and radial regression. Int J Epidemiol. 2018;47(4):1264–78.
Google Scholar
Lin Z, Deng Y, Pan W. Combining the strengths of inverse-variance weighting and Egger regression in mendelian randomization using a mixture of regressions model. PLoS Genet. 2021;17(11):e1009922.
Google Scholar
Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al. Guidelines for performing mendelian randomization investigations. Wellcome Open Res. 2019;4:186.
Google Scholar
MacKinnon DP, Lockwood CM, Hoffman JM, West SG, Sheets V. A comparison of methods to test mediation and other intervening variable effects. Psychol Methods. 2002;7(1):83–104.
Google Scholar
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.
Google Scholar
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.
Google Scholar
Zheng J, Baird D, Borges MC, Bowden J, Hemani G, Haycock P, et al. Recent developments in mendelian randomization studies. Curr Epidemiol Rep. 2017;4(4):330–45.
Google Scholar
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.
Google Scholar
Zhou Z, Lindley RI, Rådholm K, Jenkins B, Watson J, Perkovic V, et al. Canagliflozin and Stroke in type 2 Diabetes Mellitus. Stroke. 2019;50(2):396–404.
Google Scholar
Usman MS, Siddiqi TJ, Memon MM, Khan MS, Rawasia WF, Talha Ayub M, et al. Sodium-glucose co-transporter 2 inhibitors and cardiovascular outcomes: a systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25(5):495–502.
Google Scholar
Fatima K, Suri A, Rija A, Kalim S, Javaid S, Arif Z et al. The effect of sodium-glucose co-transporter 2 inhibitors on Stroke and atrial fibrillation: a systematic review and meta-analysis. Curr Probl Cardiol. 2022:101582.
Li WJ, Chen XQ, Xu LL, Li YQ, Luo BH. SGLT2 inhibitors and atrial fibrillation in type 2 Diabetes: a systematic review with meta-analysis of 16 randomized controlled trials. Cardiovasc Diabetol. 2020;19(1):130.
Google Scholar
Li D, Liu Y, Hidru TH, Yang X, Wang Y, Chen C, et al. Protective effects of Sodium-glucose transporter 2 inhibitors on Atrial Fibrillation and Atrial Flutter: a systematic review and Meta- analysis of Randomized Placebo-controlled trials. Front Endocrinol (Lausanne). 2021;12:619586.
Google Scholar
Sfairopoulos D, Liu T, Zhang N, Tse G, Bazoukis G, Letsas K, et al. Association between sodium-glucose cotransporter-2 inhibitors and incident atrial fibrillation/atrial flutter in Heart Failure patients with reduced ejection fraction: a meta-analysis of randomized controlled trials. Heart Fail Rev. 2023;28(4):925–36.
Google Scholar
Li W, Chen X, Xie X, Xu M, Xu L, Liu P, et al. Comparison of sodium-glucose cotransporter 2 inhibitors and glucagon-like peptide receptor agonists for Atrial Fibrillation in type 2 Diabetes Mellitus: systematic review with Network Meta-analysis of Randomized controlled trials. J Cardiovasc Pharmacol. 2022;79(3):281–8.
Google Scholar
Zhuo M, D’Andrea E, Paik JM, Wexler DJ, Everett BM, Glynn RJ, et al. Association of Sodium-glucose Cotransporter-2 inhibitors with Incident Atrial Fibrillation in older adults with type 2 Diabetes. JAMA Netw Open. 2022;5(10):e2235995.
Google Scholar
Hsiao FC, Yen KC, Chao TF, Chen SW, Chan YH, Chu PH. New-Onset Atrial Fibrillation in patients with type 2 Diabetes treated with novel glucose-lowering therapies. J Clin Endocrinol Metab. 2022;107(9):2493–9.
Google Scholar
Karamichalakis N, Kolovos V, Paraskevaidis I, Tsougos E. A New Hope: sodium-glucose Cotransporter-2 inhibition to prevent Atrial Fibrillation. J Cardiovasc Dev Dis. 2022;9(8).
Shetty SS, Krumerman A. Putative protective effects of sodium-glucose cotransporter 2 inhibitors on atrial fibrillation through risk factor modulation and off-target actions: potential mechanisms and future directions. Cardiovasc Diabetol. 2022;21(1):119.
Google Scholar
Peng X, Li L, Zhang M, Zhao Q, Wu K, Bai R, et al. Sodium-glucose cotransporter 2 inhibitors potentially prevent Atrial Fibrillation by ameliorating Ion Handling and mitochondrial dysfunction. Front Physiol. 2020;11:912.
Google Scholar
Piccirillo F, Mastroberardino S, Nusca A, Frau L, Guarino L, Napoli N et al. Novel antidiabetic agents and their effects on lipid Profile: a single shot for several Cardiovascular targets. Int J Mol Sci. 2023;24(12).
Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic view on the effects of SGLT2 inhibitors on lipid metabolism in Diabetic Milieu. J Clin Med. 2022;11:21.
Google Scholar
Ejiri K, Miyoshi T, Kihara H, Hata Y, Nagano T, Takaishi A, et al. Effects of luseogliflozin and voglibose on high-risk lipid profiles and inflammatory markers in Diabetes patients with Heart Failure. Sci Rep. 2022;12(1):15449.
Google Scholar
Bosch A, Ott C, Jung S, Striepe K, Karg MV, Kannenkeril D, et al. How does empagliflozin improve arterial stiffness in patients with type 2 Diabetes Mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol. 2019;18(1):44.
Google Scholar
Osto E, Bonacina F, Pirillo A, Norata GD. Neutral effect of SGLT2 inhibitors on lipoprotein metabolism: from clinical evidence to molecular mechanisms. Pharmacol Res. 2023;188:106667.
Google Scholar
Hayashi T, Fukui T, Nakanishi N, Yamamoto S, Tomoyasu M, Osamura A, et al. Dapagliflozin decreases small dense low-density lipoprotein-cholesterol and increases high-density lipoprotein 2-cholesterol in patients with type 2 Diabetes: comparison with sitagliptin. Cardiovasc Diabetol. 2017;16(1):8.
Google Scholar
Rau M, Thiele K, Korbinian Hartmann NU, Möllmann J, Wied S, Böhm M, et al. Effects of empagliflozin on lipoprotein subfractions in patients with type 2 Diabetes: data from a randomized, placebo-controlled study. Atherosclerosis. 2021;330:8–13.
Google Scholar
Harrison SL, Lane DA, Banach M, Mastej M, Kasperczyk S, Jóźwiak JJ, et al. Lipid levels, atrial fibrillation and the impact of age: results from the LIPIDOGRAM2015 study. Atherosclerosis. 2020;312:16–22.
Google Scholar
Ding M, Wennberg A, Gigante B, Walldius G, Hammar N, Modig K. Lipid levels in midlife and risk of atrial fibrillation over 3 decades-experience from the Swedish AMORIS cohort: a cohort study. PLoS Med. 2022;19(8):e1004044.
Google Scholar
Yang KC, Dudley SC Jr. Oxidative stress and atrial fibrillation: finding a missing piece to the puzzle. Circulation. 2013;128(16):1724–6.
Google Scholar
Welty FK. How do elevated triglycerides and low HDL-cholesterol affect inflammation and atherothrombosis? Curr Cardiol Rep. 2013;15(9):400.
Google Scholar
Lind V, Hammar N, Lundman P, Friberg L, Talbäck M, Walldius G, et al. Impaired fasting glucose: a risk factor for atrial fibrillation and Heart Failure. Cardiovasc Diabetol. 2021;20(1):227.
Google Scholar
Holmes MV, Richardson TG, Ference BA, Davies NM, Davey Smith G. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nat Rev Cardiol. 2021;18(6):435–53.
Google Scholar
Burgess S, Davies NM, Thompson SG. Bias due to participant overlap in two-sample mendelian randomization. Genet Epidemiol. 2016;40(7):597–608.
Google Scholar
Julkunen H, Cichońska A, Tiainen M, Koskela H, Nybo K, Mäkelä V, et al. Atlas of plasma NMR biomarkers for health and Disease in 118,461 individuals from the UK Biobank. Nat Commun. 2023;14(1):604.
Google Scholar