Lanzieri G. The greying of the baby boomers. A century-long view of ageing in European populations. Technical report. 2011.
Gavazzi G, Herrmann F, Krause KH. Aging and infectious diseases in the developing world. Clin Infect Dis. 2004;39(1):83–91. https://doi.org/10.1086/421559.
Google Scholar
Preston SH, Stokes A. Sources of Population Aging in More and Less Developed Countries. Popul Dev Rev. 2012;38(2):221–36. https://doi.org/10.1111/j.1728-4457.2012.00490.x.
Google Scholar
Shetty P. Grey matter: Ageing in developing countries. Lancet. 2012;379(9823):1285–7. https://doi.org/10.1016/S0140-6736(12)60541-8.
Google Scholar
United Nations Department of Economic and Social Affairs. World Population Ageing 2019. Technical report, Department of Economic and Social Affairs, Population Division. 2019.
Chaker L, Falla A, van der Lee SJ, Muka T, Imo D, Jaspers L, et al. The global impact of non-communicable diseases on macro-economic productivity: a systematic review. Eur J Epidemiol. 2015;30(5):357–95. https://doi.org/10.1007/s10654-015-0026-5.
Google Scholar
Kämpfen F, Wijemunige N, Evangelista B. Aging, non-communicable diseases, and old-age disability in low- and middle-income countries: a challenge for global health. Int J Pub Health. 2018;63(9):1011–2. https://doi.org/10.1007/s00038-018-1137-z.
Google Scholar
Xi JY, Lin X, Hao YT. Measurement and projection of the burden of disease attributable to population aging in 188 countries, 1990-2050: A population-based study. J Global Health. 2022;12. https://doi.org/10.7189/jogh.12.04093.
Kassebaum NJ. Global, regional, and national burden of diseases and injuries for adults 70 years and older: Systematic analysis for the Global Burden of Disease 2019 Study. BMJ. 2022;376. https://doi.org/10.1136/bmj-2021-068208.
Haynes L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Front Aging. 2020;1(October):1–4. https://doi.org/10.3389/fragi.2020.602108.
Google Scholar
Cronin CJ, Evans WN. Nursing home quality, COVID-19 deaths, and excess mortality. J Health Econ. 2022;82;102592.
Fisman DN, Bogoch I, Lapointe-Shaw L, McCready J, Tuite AR. Risk Factors Associated with Mortality among Residents with Coronavirus Disease 2019 (COVID-19) in Long-term Care Facilities in Ontario, Canada. JAMA Netw Open. 2020;3(7):1–7. https://doi.org/10.1001/jamanetworkopen.2020.15957.
Google Scholar
Henry NJ, Elagali A, Nguyen M, Chipeta MG, Moore CE. Variation in excess all-cause mortality by age, sex, and province during the first wave of the COVID-19 pandemic in Italy. Sci Rep. 2022;12(1):1–12. https://doi.org/10.1038/s41598-022-04993-7.
Google Scholar
Modig K, Lambe M, Ahlbom A, Ebeling M. Excess mortality for men and women above age 70 according to level of care during the first wave of COVID-19 pandemic in Sweden: A population-based study. Lancet Reg Health Europe. 2021;4:100072. https://doi.org/10.1016/j.lanepe.2021.100072.
Google Scholar
Molenberghs G, Faes C, Verbeeck J, Deboosere P, Abrams S, Willem L, et al. COVID-19 mortality, excess mortality, deaths per million and infection fatality ratio, Belgium, 9 March 2020 to 28 June 2020. Eurosurveillance. 2022;27(7):1–10. https://doi.org/10.2807/1560-7917.ES.2022.27.7.2002060.
Google Scholar
Gardner W, States D, Bagley N. The Coronavirus and the Risks to the Elderly in Long-Term Care. J Aging Soc Policy. 2020;32(4–5):310–5. https://doi.org/10.1080/08959420.2020.1750543.
Google Scholar
Strausbaugh LJ, Sukumar SR, Joseph CL. Infectious disease outbreaks in nursing homes: An unappreciated hazard for frail elderly persons. Clin Infect Dis. 2003;36(7):870–6. https://doi.org/10.1086/368197.
Google Scholar
Garibaldi RA. Residential care and the elderly: the burden of infection. J Hosp Infect. 1999;43(Suppl):S9–18. https://doi.org/10.1016/s0195-6701(99)90061-0.
Gaspard P, Mosnier A, Simon L, Ali-Brandmeyer O, Rabaud C, Larocca S, et al. Gastroenteritis and respiratory infection outbreaks in French nursing homes from 2007 to 2018: Morbidity and all-cause lethality according to the individual characteristics of residents. PLoS ONE. 2019;14(9):1–15. https://doi.org/10.1371/journal.pone.0222321.
Google Scholar
Hoang TV, Coletti P, Kifle YW, Kerckhove KV, Vercruysse S, Willem L, et al. Close contact infection dynamics over time: insights from a second large-scale social contact survey in Flanders, Belgium, in 2010–2011. BMC Infect Dis. 2021;21(1):1–15. https://doi.org/10.1186/s12879-021-05949-4.
Google Scholar
Bartoszko J, Loeb M. The burden of influenza in older adults: meeting the challenge. Aging Clin Exp Res. 2021;33(3):711–7. https://doi.org/10.1007/s40520-019-01279-3.
Google Scholar
Glynn JR, Moss PAH. Systematic analysis of infectious disease outcomes by age shows lowest severity in school-age children. Sci Data. 2020;7(1):1–13. https://doi.org/10.1038/s41597-020-00668-y.
Google Scholar
Mertz D, Kim TH, Johnstone J, Lam PP, Science M, Kuster SP, et al. Populations at risk for severe or complicated influenza illness: Systematic review and meta-analysis. BMJ (Online). 2013;347(7923):1–15. https://doi.org/10.1136/bmj.f5061.
Google Scholar
Moa AM, Menzies RI, Yin JK, MacIntyre CR. Modelling the influenza disease burden in people aged 50–64 and ≥ 65 years in Australia. Influenza Other Respir Viruses. 2022;16(1):132–41. https://doi.org/10.1111/irv.12902.
Wing K, Grint DJ, Mathur R, Gibbs HP, Hickman G, Nightingale E, et al. Association between household composition and severe COVID-19 outcomes in older people by ethnicity: an observational cohort study using the OpenSAFELY platform. Int J Epidemiol. 2022;51(6). https://doi.org/10.1093/ije/dyad041.
Beltrán-Sánchez H, Soneji S, Crimmins EM. Past, Present, and future of healthy life expectancy. Cold Spring Harb Perspect Med. 2015;5(11):a025957. https://doi.org/10.1101/cshperspect.a025957.
Christensen K, Doblhammer G, Rau R, Vaupel JW. Ageing populations: the challenges ahead. Lancet. 2009;374(9696):1196–208. https://doi.org/10.1016/S0140-6736(09)61460-4.
Google Scholar
Salomon JA, Wang H, Freeman MK, Vos T, Flaxman AD, Lopez AD, et al. Healthy life expectancy for 187 countries, 1990–2010: a systematic analysis for the Global Burden Disease Study 2010. Lancet. 2012;380(9859):2144–62. https://doi.org/10.1016/S0140-6736(12)61690-0.
Google Scholar
Vaupel JW, Villavicencio F, Bergeron-Boucher MP. Demographic perspectives on the rise of longevity. Proc Natl Acad Sci USA. 2021;118(9):1–10. https://doi.org/10.1073/pnas.2019536118.
Google Scholar
Keilman N, Christiansen S. Norwegian Elderly Less Likely to Live Alone in the Future. Eur J Popul. 2010;26(1):47–72. https://doi.org/10.1007/s10680-009-9195-9.
Google Scholar
Evans CJ, Ho Y, Daveson BA, Hall S, Higginson IJ, Gao W. Place and Cause of Death in Centenarians: A Population-Based Observational Study in England, 2001 to 2010. PLoS Med. 2014;11(6):1–13. https://doi.org/10.1371/journal.pmed.1001653.
Google Scholar
Poulain M, Dal L, Herm A. Trends in living arrangements and their impact on the mortality of older adults: Belgium 1991–2012. Demogr Res. 2020;43:401–30. https://doi.org/10.4054/DEMRES.2020.43.15.
Google Scholar
Eichner M, Schwehm M, Hain J, Uphoff H, Salzberger B, Knuf M, et al. 4Flu – an individual based simulation tool to study the effects of quadrivalent vaccination on seasonal influenza in Germany. BMC Infect Dis. 2014;14(1). https://doi.org/10.1186/1471-2334-14-365.
Geard N, Glass K, McCaw JM, McBryde ES, Korb KB, Keeling MJ, et al. The Effects of Demographic Change on Disease Transmission and Vaccine Impact in a Household Structured Population. Epidemics. 2015;13:56–64. https://doi.org/10.1016/j.epidem.2015.08.002.
Google Scholar
Horn J, Damm O, Greiner W, Hengel H, Kretzschmar ME, Siedler A, et al. Influence of demographic changes on the impact of vaccination against varicella and herpes zoster in Germany – a mathematical modelling study. BMC Med. 2018;16(3). https://doi.org/10.1186/s12916-017-0983-5.
McDonald SA, van Lier A, Plass D, Kretzschmar ME. The Impact of Demographic Change on the Estimated Future Burden of Infectious Diseases: Examples from Hepatitis B and Seasonal Influenza in the Netherlands. BMC Public Health. 2012;12(1046). https://doi.org/10.1186/1471-2458-12-1046.
Melegaro A, Marziano V, Del Fava E, Poletti P, Tirani M, Rizzo C, et al. The impact of demographic changes, exogenous boosting and new vaccination policies on varicella and herpes zoster in Italy: A modelling and cost-effectiveness study. BMC Med. 2018;16(117). https://doi.org/10.1186/s12916-018-1094-7.
Talbird SE, La EM, Carrico J, Poston S, Poirrier JE, DeMartino JK, et al. Impact of population aging on the burden of vaccine-preventable diseases among older adults in the United States. Hum Vaccines Immunotherapeutics. 2020. https://doi.org/10.1080/21645515.2020.1780847.
Williams JR, Manfredi P, Melegaro A. The potential impact of the demographic transition in the Senegal-Gambia region of sub-Saharan Africa on the burden of infectious disease and its potential synergies with control programmes: The case of hepatitis B. BMC Med. 2018;16(1):1–13. https://doi.org/10.1186/s12916-018-1100-0.
Google Scholar
Williams JR, Manfredi P. Ageing Populations and Childhood infections: The Potential Impact on Epidemic patterns and Morbidity. Int J Epidemiol. 2004;33:566–72. https://doi.org/10.1093/ije/dyh098.
Google Scholar
Wroe PC, Finkelstein JA, Ray GT, Linder JA, Johnson KM, Rifas-Shiman S, et al. Aging population and future burden of pneumococcal pneumonia in the United States. J Infect Dis. 2012;205(10):1589–92. https://doi.org/10.1093/infdis/jis240.
Google Scholar
Møgelmose S, Vijnck L, Neven F, Neels K, Beutels P, Hens N. Population age and household structures shape transmission dynamics of emerging infectious diseases : a longitudinal microsimulation approach. medRxiv. 2023;2023.06.05. https://doi.org/10.1101/2023.06.05.23290874.
Krivitsky PN, Coletti P, Hens N. A Tale of Two Datasets: Representativeness and Generalisability of Inference for Samples of Networks. arXiv: 2202.03685. 2022.
Gold MR, Stevenson D, Fryback DG. HALYs and QALYs and DALYs, Oh My: Similarities and Differences in Summary Measures of Population Health. Annu Rev Public Health. 2002;23(1):115–34. https://doi.org/10.1146/annurev.publhealth.23.100901.140513.
Google Scholar
Preston SH, Heuveline P, Guillot M. Demography. Measuring and Modeling Population Processes. Oxford: Blackwell Publishers; 2001.
Federaal Planbureau. Prospectieve sterftequotiënten. Technical Report December 2009.
Vandresse M. Federal Planning Bureau. Modelling fertility for national population projections. The case of Belgium. Technical report, Federal Planning Bureau (Belgium). 2020.
Gadeyne S. The ultimate inequality: socio-economic differences in all-cause and cause-specific mortality in Belgium in the first part of the 1990s. Brussels: NIDI/CBGS Publications; 2006.
Neels K. Reproductive strategies in Belgian fertility, 1960–1990. Brussels: NIDI/CBGS Publications; 2006.
Ball F, Mollison D, Scalia-Tomba G. Epidemics with Two Levels of Mixing. Ann Appl Probab. 1997;7(1):46–89.
Google Scholar
Willem L, Van Hoang T, Funk S, Coletti P, Beutels P, Beutels P, et al. SOCRATES: An online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res Notes. 2020;13(1):1–8. https://doi.org/10.1186/s13104-020-05136-9.
Google Scholar
Béraud G, Kazmercziak S, Beutels P, Levy-Bruhl D, Lenne X, Mielcarek N, et al. The French connection: The first large population-based contact survey in France relevant for the spread of infectious diseases. PLoS ONE. 2015;10(7):1–22. https://doi.org/10.1371/journal.pone.0133203.
Google Scholar
Goeyvaerts N, Santermans E, Potter G, Torneri A, Van Kerckhove K, Willem L, et al. Household members do not contact each other at random: Implications for infectious disease modelling. Proc R Soc B Biol Sci. 2018;285(1893). https://doi.org/10.1098/rspb.2018.2201.
O’Malley AJ, Marsden PV. The analysis of social networks. Health Serv Outcome Res Methodol. 2008;8(4):222–69. https://doi.org/10.1007/s10742-008-0041-z.
Google Scholar
Biggerstaff M, Cauchemez S, Reed C, Gambhir M, Finelli L. Estimates of the reproduction number for seasonal, pandemic, and zoonotic influenza: A systematic review of the literature. BMC Infect Dis. 2014;14(1):1–20. https://doi.org/10.1186/1471-2334-14-480.
Google Scholar
Cowling BJ, Lau MSY, Ho LM, Chuang SK, Tsang T, Liu SH, et al. The effective reproduction number of pandemic influenza: Prospective estimation. Epidemiology. 2010;21(6):842–6. https://doi.org/10.1097/EDE.0b013e3181f20977.
Google Scholar
Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020;20(9):e238–44. https://doi.org/10.1016/S1473-3099(20)30484-9.
Google Scholar
Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time lines of infection and disease in human influenza: A review of volunteer challenge studies. Am J Epidemiol. 2008;167(7):775–85. https://doi.org/10.1093/aje/kwm375.
Google Scholar
Cauchemez S, Carrat F, Viboud C, Valleron AJ, Boëlle PY. A Bayesian MCMC approach to study transmission of influenza: Application to household longitudinal data. Stat Med. 2004;23(22):3469–87. https://doi.org/10.1002/sim.1912.
Google Scholar
Glasser J, Taneri D, Feng Z, Chuang JH, Tüll P, Thompson W, et al. Evaluation of targeted influenza vaccination strategies via population modeling. PLoS ONE. 2010;5(9):1–8. https://doi.org/10.1371/journal.pone.0012777.
Google Scholar
Willem L, Abrams S, Libin PJK, Coletti P, Kuylen E, Petrof O, et al. The impact of contact tracing and household bubbles on deconfinement strategies for COVID-19. Nat Commun. 2021;12(1):1–9. https://doi.org/10.1038/s41467-021-21747-7.
Google Scholar
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199–207. https://doi.org/10.1056/nejmoa2001316.
Google Scholar
McEvoy D, McAloon C, Collins A, Hunt K, Butler F, Byrne A, et al. Relative infectiousness of asymptomatic SARS-CoV-2 infected persons compared with symptomatic individuals: A rapid scoping review. BMJ Open. 2021;11(5):1–8. https://doi.org/10.1136/bmjopen-2020-042354.
Google Scholar
Abrams S, Wambua J, Santermans E, Willem L, Kuylen E, Coletti P, et al. Modelling the early phase of the Belgian COVID-19 epidemic using a stochastic compartmental model and studying its implied future trajectories. Epidemics. 2021;35:100449. https://doi.org/10.1016/j.epidem.2021.100449.
Google Scholar
Coletti P, Libin P, Petrof O, Willem L, Abrams S, Herzog SA, et al. A data-driven metapopulation model for the Belgian COVID-19 epidemic: assessing the impact of lockdown and exit strategies. BMC Infect Dis. 2021;21(1):1–12. https://doi.org/10.1186/s12879-021-06092-w.
Google Scholar
Franco N, Coletti P, Willem L, Angeli L, Lajot A, Abrams S, et al. Inferring age-specific differences in susceptibility to and infectiousness upon SARS-CoV-2 infection based on Belgian social contact data. PLoS Comput Biol. 2022;18(3):1–17. https://doi.org/10.1371/journal.pcbi.1009965.
Google Scholar
He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672–5. https://doi.org/10.1038/s41591-020-0869-5.
Google Scholar
Wu JT, Leung K, Bushman M, Kishore N, Niehus R, de Salazar PM, et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med. 2020;26(4):506–10. https://doi.org/10.1038/s41591-020-0822-7.
Google Scholar
Riley S, Kwok KO, Wu KM, Ning DY, Cowling BJ, Wu JT, et al. Epidemiological characteristics of 2009 (H1N1) pandemic influenza based on paired sera from a longitudinal community cohort study. PLoS Med. 2011;8(6). https://doi.org/10.1371/journal.pmed.1000442.
Briggs AH, Meacock R, Goldstein DA, Kirwin E, Wisløff T. Estimating (quality-adjusted) life-year losses associated with deaths: With application to COVID-19. Health Econ. 2022;30:699–707. https://doi.org/10.1002/hec.4208.
Google Scholar
Adab P, Haroon S, O’Hara ME, Jordan RE. Comorbidities and covid-19. BMJ. 2022;19–20. https://doi.org/10.1136/bmj.o1431.
Bajaj V, Gadi N, Spihlman AP, Wu SC, Choi CH, Moulton VR. Aging, Immunity, and COVID-19: How Age Influences the Host Immune Response to Coronavirus Infections? Front Physiol. 2021;11:1–23. https://doi.org/10.3389/fphys.2020.571416.
Google Scholar
Pérez-Flores E, Izquierdo-Puente JC, Castillo-Pérez JJ, Ramírez-Rosales G, Grijalva-Otero I, López-Macías C, et al. Quantifying the mortality caused by the H1N1 influenza virus during the 2009 pandemic in Mexico. J Infect Dev Countries. 2014;8(6):742–8. https://doi.org/10.3855/jidc.3622.
Google Scholar
House T, Keeling MJ. Household Structure and Infectious Disease Transmission. Epidemiol Infect. 2009;137:654–61. https://doi.org/10.1017/S0950268808001416.
Google Scholar
Keeling MJ, Rohani P. Modeling Infectious Diseases in Humans and Animals. Princeton: Princeton University Press; 2007. https://doi.org/10.2307/j.ctvcm4gk0.
Google Scholar
Reed C, Katz JM, Hancock K, Balish A, Fry AM. Prevalence of Seropositivity to Pandemic Influenza A/H1N1 Virus in the United States following the 2009 Pandemic. PLoS ONE. 2012;7(10). https://doi.org/10.1371/journal.pone.0048187.
Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020;396. https://doi.org/10.1016/S0140-6736(20)31304-0.
Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med. 2008;5(3). https://doi.org/10.1371/journal.pmed.0050074.
Keilman N. Erroneous Population Forecasts. In: Bengtsson T, Keilman N, editors. Old and New Perspectives on Mortality Forecasting. Cham: Springer; 2019.
Crèvecoeur J, Hens N, Neyens T, Larivière Y, Verhasselt B, Masson H. Change in COVID19 outbreak pattern following vaccination in long-term care facilities in Flanders, Belgium. Vaccine. 2022;40:6218–24.
Google Scholar