Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global burden of Cardiovascular Diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021. https://doi.org/10.1016/j.jacc.2020.11.010
Google Scholar
Shengshou H. Report on cardiovascular health and Diseases burden in China: an updated summary of 2020. Chin Circ J. 2021;36(6):521–45.
Collaborators GBDRF, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national com-parative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 coun- tries, 1990–2013: a systematic analysis for the global burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323. https://doi.org/10.1016/S0140-6736(15)00128-2
Google Scholar
Collaborators GBDRF. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of Disease Study 2019. Lancet. 2020;396(10258):1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2
Google Scholar
Brownlee M. The pathobiology of diabetic Complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25. https://doi.org/10.2337/diabetes.54.6.1615
Google Scholar
Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95(7):3347–51. https://doi.org/10.1210/jc.2010-0288
Google Scholar
Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299–304. https://doi.org/10.1089/met.2008.0034
Google Scholar
Du T, Yuan G, Zhang M, Zhou X, Sun X, Yu X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc Diabetol. 2014;13:146. https://doi.org/10.1186/s12933-014-0146-3
Google Scholar
Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in Cardiovascular Diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21(1):68. https://doi.org/10.1186/s12933-022-01511-x
Google Scholar
Tian X, Zuo Y, Chen S, Liu Q, Tao B, Wu S, et al. Triglyceride-glucose index is associated with the risk of Myocardial Infarction: an 11-year prospective study in the Kailuan cohort. Cardiovasc Diabetol. 2021;20(1):19. https://doi.org/10.1186/s12933-020-01210-5
Google Scholar
Zhu Y, Liu K, Chen M, Liu Y, Gao A, Hu C, et al. Triglyceride-glucose index is associated with in-stent restenosis in patients with acute coronary syndrome after percutaneous coronary intervention with drug-eluting stents. Cardiovasc Diabetol. 2021;20(1):137. https://doi.org/10.1186/s12933-021-01332-4
Google Scholar
Su J, Li Z, Huang M, Wang Y, Yang T, Ma M, et al. Triglyceride glucose index for the detection of the severity of coronary artery Disease in different glucose metabolic states in patients with coronary Heart Disease: a RCSCD-TCM study in China. Cardiovasc Diabetol. 2022;21(1):96. https://doi.org/10.1186/s12933-021-01332-4
Google Scholar
Gu S, Wang A, Ning G, Zhang L, Mu Y. Insulin resistance is associated with urinary albumin-creatinine ratio in normal weight individuals with Hypertension and Diabetes: the REACTION study. J Diabetes. 2020;12(5):406–16. https://doi.org/10.1111/1753-0407.13010
Google Scholar
Liu Y, Zhu B, Zhou W, Du Y, Qi D, Wang C, et al. Triglyceride-glucose index as a marker of adverse cardiovascular prognosis in patients with coronary Heart Disease and Hypertension. Cardiovasc Diabetol. 2023;22(1):133. https://doi.org/10.1186/s12933-023-01866-9
Google Scholar
Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al. A calcium antagonist vs a non-calcium antagonist Hypertension treatment strategy for patients with coronary artery Disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial. JAMA. 2003;290(21):2805–16. https://doi.org/10.1001/jama.290.21.2805
Google Scholar
Mancia Chairperson G, Kreutz Co-Chair R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH guidelines for the management of arterial Hypertension the Task Force for the management of arterial Hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023 Jun;21. https://doi.org/10.1097/HJH.0000000000003480. Epub ahead of print.
Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinform. 2019;20(2):492–503. https://doi.org/10.1093/bib/bbx124
Google Scholar
Rong L, Hou N, Hu J, Gong Y, Yan S, Li C, et al. The role of TyG index in predicting the incidence of Diabetes in Chinese elderly men: a 20-year retrospective study. Front Endocrinol (Lausanne). 2023;14:1191090. https://doi.org/10.3389/fendo.2023.1191090
Google Scholar
Zhang M, Wang B, Liu Y, Sun X, Luo X, Wang C, et al. Cumulative increased risk of incident type 2 Diabetes Mellitus with increasing triglyceride glucose index in normal-weight people: the rural Chinese cohort study. Cardiovasc Diabetol. 2017;16(1):30. https://doi.org/10.1186/s12933-017-0514-x
Google Scholar
Hu C, Zhang J, Liu J, Liu Y, Gao A, Zhu Y, et al. Discordance between the triglyceride glucose index and fasting plasma glucose or HbA1C in patients with acute coronary syndrome undergoing percutaneous coronary intervention predicts cardiovascular events: a cohort study from China. Cardiovasc Diabetol. 2020;19(1):116. https://doi.org/10.1186/s12933-020-01091-8
Google Scholar
Huang R, Wang Z, Chen J, Bao X, Xu N, Guo S, et al. Prognostic value of triglyceride glucose (TyG) index in patients with acute decompensated Heart Failure. Cardiovasc Diabetol. 2022;21(1):88. https://doi.org/10.1186/s12933-022-01507-7
Google Scholar
Liu XC, He GD, Lo K, Huang YQ, Feng YQ. The triglyceride-glucose index, an insulin resistance marker, was non-linear associated with all-cause and cardiovascular mortality in the general population. Front Cardiovasc Med. 2021;7:628109. https://doi.org/10.3389/fcvm.2020.628109
Google Scholar
Li J, Dong Z, Wu H, Liu Y, Chen Y, Li S, et al. The triglyceride-glucose index is associated with Atherosclerosis in patients with symptomatic coronary artery Disease, regardless of Diabetes Mellitus and hyperlipidaemia. Cardiovasc Diabetol. 2023;22(1):224. https://doi.org/10.1186/s12933-023-01919-z. PMID: 37620954; PMCID: PMC10463708.
Google Scholar
Gao Q, Lin Y, Xu R, Luo F, Chen R, Li P, et al. Positive association of triglyceride-glucose index with new-onset Hypertension among adults: a national cohort study in China. Cardiovasc Diabetol. 2023;22(1):58. https://doi.org/10.1186/s12933-023-01795-7
Google Scholar
Tian Y, Sun J, Qiu M, Lu Y, Qian X, Sun W, et al. Association between the triglyceride-glucose index and albuminuria in hypertensive individuals. Clin Exp Hypertens. 2023;45(1):2150204. https://doi.org/10.1080/10641963.2022.2150204
Google Scholar
Chen CL, Liu L, Lo K, Huang JY, Yu YL, Huang YQ, et al. Association between triglyceride glucose index and risk of New-Onset Diabetes among Chinese adults: findings from the China Health and Retirement Longitudinal Study. Front Cardiovasc Med. 2020;7:610322. https://doi.org/10.3389/fcvm.2020.610322
Google Scholar
Wang K, He G, Zhang Y, Yin J, Yan Y, Zhang Y, et al. Association of triglyceride-glucose index and its interaction with obesity on Hypertension risk in Chinese: a population-based study. J Hum Hypertens. 2021;35(3):232–9. https://doi.org/10.1038/s41371-020-0326-4
Google Scholar
Zhang F, Zhang Y, Guo Z, Yang H, Ren M, Xing X, et al. The association of triglyceride and glucose index, and triglyceride to high-density lipoprotein cholesterol ratio with prehypertension and Hypertension in normoglycemic subjects: a large cross-sectional population study. J Clin Hypertens (Greenwich). 2021;23(7):1405–12. https://doi.org/10.1111/jch.14305
Google Scholar
Pan W, Ren Y, Yang F, Wang M, Li X, Yin D. Triglyceride glucose index is associated with obstructive coronary artery Disease in hypertensive patients. Cardiovasc Diabetol. 2023;22(1):9. https://doi.org/10.1186/s12933-023-01739-1
Google Scholar
Sajdeya O, Beran A, Mhanna M, Alharbi A, Burmeister C, Abuhelwa Z, et al. Triglyceride glucose index for the prediction of subclinical Atherosclerosis and arterial stiffness: a meta-analysis of 37,780 individuals. Curr Probl Cardiol. 2022;47(12):101390. https://doi.org/10.1016/j.cpcardiol.2022.101390
Google Scholar
Li W, Chen D, Tao Y, Lu Z, Wang D. Association between triglyceride-glucose index and carotid Atherosclerosis detected by ultrasonography. Cardiovasc Diabetol. 2022;21(1):137. https://doi.org/10.1186/s12933-022-01570-0
Google Scholar
Jung MH, Yi SW, An SJ, Yi JJ, Ihm SH, Han S, et al. Associations between the triglyceride-glucose index and Cardiovascular Disease in over 150,000 cancer survivors: a population-based cohort study. Cardiovasc Diabetol. 2022;21(1):52. https://doi.org/10.1186/s12933-022-01490-z. PMID: 35429972; PMCID: PMC9013459.
Google Scholar
Kim YM, Kim JH, Park JS, Baik SJ, Chun J, Youn YH, et al. Association between triglyceride-glucose index and gastric carcinogenesis: a health checkup cohort study. Gastric Cancer. 2022;25(1):33–41. https://doi.org/10.1007/s10120-021-01222-4. Erratum in: Gastric Cancer. 2021; Erratum in: Gastric Cancer. 2022 Feb 11.
Google Scholar
Zhao Q, Zhang TY, Cheng YJ, Ma Y, Xu YK, Yang JQ, et al. Triglyceride-glucose index as a surrogate marker of insulin resistance for predicting cardiovascular outcomes in nondiabetic patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention. J Atheroscler Thromb. 2021;28(11):1175–94. https://doi.org/10.5551/jat.59840
Google Scholar
Gao A, Liu J, Hu C, Liu Y, Zhu Y, Han H, et al. Association between the triglyceride glucose index and coronary collateralization in coronary artery Disease patients with chronic total occlusion lesions. Lipids Health Dis. 2021;20(1):140. https://doi.org/10.1186/s12944-021-01574-x
Google Scholar
Knuuti J, Wijns W, Saraste A, Capodanno D, Barbato E, Funck-Brentano C, ESC Scientific Document Group. ;. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J. 2020;41(3):407–477. https://doi.org/10.1093/eurheartj/ehz425. Erratum in: Eur Heart J. 2020;41(44):4242.
Zhu B, Liu Y, Zhou W, Du Y, Qi D, Wang C, et al. Clinical characteristics and outcomes of Chinese patients with coronary Heart Disease and resistant Hypertension. J Clin Hypertens (Greenwich). 2023;25(4):350–9. https://doi.org/10.1111/jch.14651
Google Scholar
Muller DC, Elahi D, Tobin JD, Andres R. The effect of age on insulin resistance and secretion: a review. Semin Nephrol. 1996;16(4):289–98. PMID: 8829267.
Google Scholar
Lee JH, Jeon S, Joung B, Lee HS, Kwon YJ. Associations of homeostatic model assessment for insulin resistance trajectories with Cardiovascular Disease incidence and mortality. Arterioscler Thromb Vasc Biol. 2023;43(9):1719–28. https://doi.org/10.1161/ATVBAHA.123.319200
Google Scholar
Hong S, Han K, Park CY. The triglyceride glucose index is a simple and low-cost marker associated with atherosclerotic Cardiovascular Disease: a population-based study. BMC Med. 2020;18(1):361. https://doi.org/10.1186/s12916-020-01824-2
Google Scholar
Ferrannini E, Haffner SM, Stern MP. Essential Hypertension: an insulin-resistant state. J Cardiovasc Pharmacol. 1990;15(Suppl 5):18–25.
Google Scholar
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of Cardiovascular Disease. Cardiovasc Diabetol. 2018;17(1):122. https://doi.org/10.1186/s12933-018-0762-4
Google Scholar
Othman EM, Leyh A, Stopper H. Insulin mediated DNA damage in mammalian colon cells and human lymphocytes in vitro. Mutat Res. 2013;745–746:34 – 9. https://doi.org/10.1016/j.mrfmmm.2013.03.006
Liu S, Zhang C, Wan J. The correlation between T-wave abnormalities and adverse cardiovascular events and echocardiographic changes in hypertensive patients. Clin Exp Hypertens. 2023;45(1):2185252. https://doi.org/10.1080/10641963.2023.2185252
Google Scholar
Wu Z, Liu L, Wang W, Cui H, Zhang Y, Xu J, et al. Triglyceride-glucose index in the prediction of adverse cardiovascular events in patients with premature coronary artery Disease: a retrospective cohort study. Cardiovasc Diabetol. 2022;21(1):142. https://doi.org/10.1186/s12933-022-01576-8
Google Scholar
Mottillo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, et al. The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–32. https://doi.org/10.1016/j.jacc.2010.05.034
Google Scholar
Zhao J, Fan H, Wang T, Yu B, Mao S, Wang X, et al. TyG index is positively associated with risk of CHD and coronary Atherosclerosis severity among NAFLD patients. Cardiovasc Diabetol. 2022;21(1):123. https://doi.org/10.1186/s12933-022-01548-y
Google Scholar
Miao M, Zhou G, Bao A, Sun Y, Du H, Song L, et al. Triglyceride-glucose index and common carotid artery intima-media thickness in patients with ischemic Stroke. Cardiovasc Diabetol. 2022;21(1):43. https://doi.org/10.1186/s12933-022-01472-1
Google Scholar
Khan SH, Sobia F, Niazi NK, Manzoor SM, Fazal N, Ahmad F. Metabolic clustering of risk factors: evaluation of triglyceride-glucose index (TyG index) for evaluation of insulin resistance. Diabetol Metab Syndr. 2018;10:74. https://doi.org/10.1186/s13098-018-0376-8
Google Scholar
Li T, Wang P, Wang X, Liu Z, Zhang Z, Zhang Y, et al. Inflammation and insulin resistance in diabetic chronic coronary syndrome patients. Nutrients. 2023;15(12):2808. https://doi.org/10.3390/nu15122808
Google Scholar
Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin sensitivity and metabolism. Nat Rev Mol Cell Biol. 2018;19(10):654–72. https://doi.org/10.1038/s41580-018-0044-8
Google Scholar
Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, et al. Insulin resistance, cardiovascular stiffening and Cardiovascular Disease. Metabolism. 2021;119:154766. https://doi.org/10.1016/j.metabol.2021.154766
Google Scholar
Molina MN, Ferder L, Manucha W. Emerging role of nitric oxide and heat shock proteins in insulin resistance. Curr Hypertens Rep. 2016;18(1):1. https://doi.org/10.1007/s11906-015-0615-4
Google Scholar
Nishikawa T, Kukidome D, Sonoda K, Fujisawa K, Matsuhisa T, Motoshima H, et al. Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res Clin Pract. 2007;77(Suppl 1):161–4. https://doi.org/10.1016/j.diabres.2007.01.071
Google Scholar
Gerrits AJ, Koekman CA, van Haeften TW, Akkerman JW. Platelet tissue factor synthesis in type 2 diabetic patients is resistant to inhibition by insulin. Diabetes. 2010;59(6):1487–95. https://doi.org/10.2337/db09-1008
Google Scholar
Zheng H, Chen G, Wu K, Wu W, Huang Z, Wang X, et al. Relationship between cumulative exposure to triglyceride-glucose index and Heart Failure: a prospective cohort study. Cardiovasc Diabetol. 2023;22(1):239. https://doi.org/10.1186/s12933-023-01967-5
Google Scholar
Perticone M, Maio R, Gigliotti S, Shehaj E, Toscani AF, Capomolla A, et al. Mutual effect modification between insulin resistance and endothelial dysfunction in predicting incident Heart Failure in hypertensives. Biomedicines. 2023;11(8):2188. https://doi.org/10.3390/biomedicines11082188
Google Scholar
Askin L, Tanriverdi O. Is the atherogenic index of plasma (AIP) a Cardiovascular Disease marker ? Cor Vasa. 2023;65:100–3. https://doi.org/10.33678/cor.2022.085
Google Scholar