Sodium-glucose cotransporter-2 inhibition for heart failure with preserved ejection fraction and chronic kidney disease with or without type 2 diabetes mellitus: a narrative review

  • Vijay K, Neuen BL, Lerma EV. Heart failure in patients with diabetes and chronic kidney disease: challenges and opportunities. Cardiorenal Med. 2022;12(1):1–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fontes-Carvalho R, Santos-Ferreira D, Raz I, Marx N, Ruschitzka F, Cosentino F. Protective effects of SGLT-2 inhibitors across the cardiorenal continuum: two faces of the same coin. Eur J Prev Cardiol. 2022;29(9):1352–60.

    Article 
    PubMed 

    Google Scholar 

  • Zelniker TA, Wiviott SD, Raz I, Im K, Goodrich EL, Bonaca MP, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019;393(10166):31–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packer M, Butler J, Zannad F, Pocock SJ, Filippatos G, Ferreira JP, et al. Empagliflozin and major renal outcomes in heart failure. N Engl J Med. 2021;385(16):1531–3.

    Article 
    PubMed 

    Google Scholar 

  • McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 2021;23(3):352–80.

    Article 
    PubMed 

    Google Scholar 

  • McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022;79(17):e263–421.

    Article 
    PubMed 

    Google Scholar 

  • Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A, et al. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol. 2021;28(15):1682–90.

    Article 
    PubMed 

    Google Scholar 

  • Tsao CW, Aday AW, Almarzooq ZI, Alonso A, Beaton AZ, Bittencourt MS, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022;145(8):e153–639.

    Article 
    PubMed 

    Google Scholar 

  • Dunlay SM, Roger VL, Redfield MM. Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2017;14(10):591–602.

    Article 
    PubMed 

    Google Scholar 

  • Teramoto K, Teng TK, Chandramouli C, Tromp J, Sakata Y, Lam CS. Epidemiology and clinical features of heart failure with preserved ejection fraction. Card Fail Rev. 2022;8:e27.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Savarese G, Becher PM, Lund LH, Seferovic P, Rosano GMC, Coats A. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2022;118(17):3272–87.

    Article 
    CAS 

    Google Scholar 

  • Redfield MM, Jacobsen SJ, Burnett JC Jr, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289(2):194–202.

    Article 
    PubMed 

    Google Scholar 

  • Jones NR, Roalfe AK, Adoki I, Hobbs FDR, Taylor CJ. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail. 2019;21(11):1306–25.

    Article 
    PubMed 

    Google Scholar 

  • Rossing P, Caramori ML, Chan JCN, Heerspink HJL, Hurst C, Khunti K, et al. Executive summary of the KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease: an update based on rapidly emerging new evidence. Kidney Int. 2022;102(5):990–9.

    Article 
    PubMed 

    Google Scholar 

  • GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.

    Article 

    Google Scholar 

  • Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS ONE. 2016;11(7):e0158765.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Centers for Disease Control and Prevention. Chronic kidney disease in the United States, 2021. 2021. https://www.cdc.gov/kidneydisease/publications-resources/CKD-national-facts.html. Accessed 16 Aug 2022.

  • Kovesdy CP. 2022 Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl. 2011;12(1):7–11.

    Article 

    Google Scholar 

  • NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398(10304):957–80.

  • Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389(10075):1238–52.

    Article 
    PubMed 

    Google Scholar 

  • KDIGO. Chapter 1: Definition and classification of CKD (In: KDIGO 2012 Clinical practice guideline for the evaluation and management of chronic kidney disease). Kidney Int Suppl 2013;3(1):19–62.

  • United States Renal Data System. 2022 USRDS annual data report: epidemiology of kidney disease in the United States. 2022. https://usrds-adr.niddk.nih.gov/2022?dkrd=/about-niddk/strategic-plans-reports/usrds/annual-data-report. Accessed 24 Mar 2023.

  • Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143(11):1157–72.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tonelli M, Wiebe N, Culleton B, House A, Rabbat C, Fok M, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17(7):2034–47.

    Article 
    PubMed 

    Google Scholar 

  • American Diabetes Association Professional Practice C. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S17–38.

  • Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al KJ. Epidemiology of type 2 diabetes – global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107–11.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • American Diabetes Association. Statistics about diabetes. 2022. https://diabetes.org/about-us/statistics/about-diabetes. Accessed 8 Dec 2022.

  • Lin X, Xu Y, Pan X, Xu J, Ding Y, Sun X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):14790.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stratton IM, Adler AI, Neil HA, Matthews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321(7258):405–12.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang Y, Hu G, Yuan Z, Chen L. Glycosylated hemoglobin in relationship to cardiovascular outcomes and death in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS ONE. 2012;7(8):e42551.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erqou S, Lee CTC, Suffoletto M, Echouffo-Tcheugui JB, de Boer RA, van Melle JP, et al. Association between glycated haemoglobin and the risk of congestive heart failure in diabetes mellitus: systematic review and meta-analysis. Eur J Heart Fail. 2013;15(2):185–93.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babel RA, Dandekar MP. A review on cellular and molecular mechanisms linked to the development of diabetes complications. Curr Diabetes Rev. 2021;17(4):457–73.

    CAS 
    PubMed 

    Google Scholar 

  • American Diabetes Association Professional Practice Committee. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S144–74.

  • House AA, Wanner C, Sarnak MJ, Piña IL, McIntyre CW, Komenda P, et al. Heart failure in chronic kidney disease: conclusions from a Kidney Disease: improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2019;95(6):1304–17.

    Article 
    PubMed 

    Google Scholar 

  • Kottgen A, Russell SD, Loehr LR, Crainiceanu CM, Rosamond WD, Chang PP, et al. Reduced kidney function as a risk factor for incident heart failure: the Atherosclerosis Risk in Communities (ARIC) study. J Am Soc Nephrol. 2007;18(4):1307–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bansal N, Zelnick L, Bhat Z, Dobre M, He J, Lash J, et al. Burden and outcomes of heart failure hospitalizations in adults with chronic kidney disease. J Am Coll Cardiol. 2019;73(21):2691–700.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porter AC, Lash JP, Xie D, Pan Q, DeLuca J, Kanthety R, et al. Predictors and outcomes of health-related quality of life in adults with CKD. Clin J Am Soc Nephrol. 2016;11(7):1154–62.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agrawal A, Naranjo M, Kanjanahattakij N, Rangaswami J, Gupta S. Cardiorenal syndrome in heart failure with preserved ejection fraction-an under-recognized clinical entity. Heart Fail Rev. 2019;24(4):421–37.

    Article 
    PubMed 

    Google Scholar 

  • Joslin JR, Lioudaki E, Androulakis E. Interrelation between heart failure with preserved ejection fraction and renal impairment. Rev Cardiovasc Med. 2022;23(2):69.

    Article 
    PubMed 

    Google Scholar 

  • van de Wouw J, Broekhuizen M, Sorop O, Joles JA, Verhaar MC, Duncker DJ, et al. Chronic kidney disease as a risk factor for heart failure with preserved ejection fraction: a focus on microcirculatory factors and therapeutic targets. Front Physiol. 2019;10:1108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon SD, McMurray JJV, Anand IS, Ge J, Lam CSP, Maggioni AP, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lejeune S, Roy C, Slimani A, Pasquet A, Vancraeynest D, Beauloye C, et al. Heart failure with preserved ejection fraction in Belgium: characteristics and outcome of a real-life cohort. Acta Cardiol. 2021;76(7):697–706.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Löfman I, Szummer K, Dahlström U, Jernberg T, Lund LH. Associations with and prognostic impact of chronic kidney disease in heart failure with preserved, mid-range, and reduced ejection fraction. Eur J Heart Fail. 2017;19(12):1606–14.

    Article 
    PubMed 

    Google Scholar 

  • Fauchier L, Maisons V, Fauchier G, Herbert J, Angoulvant D, Ducluzeau PH, et al. Impact of type 2 diabetes on the incidence of cardiorenal syndromes and on subsequent clinical outcomes: a propensity-matched nationwide analysis. Eur Heart J. 2022;43(Suppl 2):1063.

    Google Scholar 

  • Patel N, Yaqoob MM, Aksentijevic D. Cardiac metabolic remodelling in chronic kidney disease. Nat Rev Nephrol. 2022;18(8):524–37.

    Article 
    PubMed 

    Google Scholar 

  • Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016;18(6):588–98.

    Article 
    PubMed 

    Google Scholar 

  • Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.

    Article 
    PubMed 

    Google Scholar 

  • Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J. 2010;31(6):703–11.

    Article 
    PubMed 

    Google Scholar 

  • Kim JA, Wu L, Rodriguez M, Lentine KL, Virk HUH, Hachem KE, et al. Recent developments in the evaluation and management of cardiorenal syndrome: a comprehensive review. Curr Probl Cardiol. 2023;48(3): 101509.

    Article 
    PubMed 

    Google Scholar 

  • Méndez AB, Azancot MA, Olivella A, Soler MJ. New aspects in cardiorenal syndrome and HFpEF. Clin Kidney J. 2022;15(10):1807–15.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simmonds SJ, Cuijpers I, Heymans S, Jones EAV. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells. 2020;9(1):242.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, et al. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors. Int J Mol Sci. 2022;23(7):3651.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao YM, Feng ST, Wen Y, Tang TT, Wang B, Liu BC. Cardiorenal protection of SGLT2 inhibitors-perspectives from metabolic reprogramming. EBioMedicine. 2022;83:104215.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu H, Sridhar VS, Boulet J, Dharia A, Khan A, Lawler PR, et al. Cardiorenal protection with SGLT2 inhibitors in patients with diabetes mellitus: from biomarkers to clinical outcomes in heart failure and diabetic kidney disease. Metabolism. 2022;126:154918.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prandi FR, Barone L, Lecis D, Belli M, Sergi D, Milite M, et al. Biomolecular mechanisms of cardiorenal protection with sodium-glucose co-transporter 2 inhibitors. Biomolecules. 2022;12(10):1349.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon SD, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN, et al. Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial. Eur J Heart Fail. 2021;23(7):1217–25.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387(12):1089–98.

    Article 
    PubMed 

    Google Scholar 

  • Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J, et al. Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved trial. Eur J Heart Fail. 2019;21(10):1279–87.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCausland FR, Claggett BL, Vaduganathan M, Desai AS, Jhund P, de Boer RA, et al. Dapagliflozin and kidney outcomes in patients with heart failure with mildly reduced or preserved ejection fraction: a prespecified analysis of the DELIVER randomized clinical trial. JAMA Cardiol. 2022;8(1):56–65.

    Article 

    Google Scholar 

  • Zoler ML. Empagliflozin win in EMPEROR-Preserved HF, but renal outcomes puzzle. In: Medscape Medical News. 2021. https://www.medscape.com/viewarticle/957997. Accessed 1 Nov 2022.

  • Khan MS, Bakris GL, Shahid I, Weir MR, Butler J. Potential role and limitations of estimated glomerular filtration rate slope assessment in cardiovascular trials: a review. JAMA Cardiol. 2022;7(5):549–55.

    Article 
    PubMed 

    Google Scholar 

  • Tuttle KR, Rangaswami J. SGLT2 inhibitors as the bedrock of therapy for heart failure. Lancet. 2022;400(10354):711–3.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packer M, Zannad F, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Influence of endpoint definitions on the effect of empagliflozin on major renal outcomes in the EMPEROR-Preserved trial. Eur J Heart Fail. 2021;23(10):1798–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packer M, Butler J, Zannad F, Filippatos G, Ferreira JP, Pocock SJ, et al. Effect of empagliflozin on worsening heart failure events in patients with heart failure and preserved ejection fraction: EMPEROR-preserved trial. Circulation. 2021;144(16):1284–94.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Packer M, Butler J, Filippatos G, Zannad F, Ferreira JP, Zeller C, et al. Design of a prospective patient-level pooled analysis of two parallel trials of empagliflozin in patients with established heart failure. Eur J Heart Fail. 2020;22(12):2393–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaduganathan M, Docherty KF, Claggett BL, Jhund PS, de Boer RA, Hernandez AF, et al. SGLT-2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022;400(10354):757–67.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021;384(2):117–28.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nassif ME, Windsor SL, Borlaug BA, Kitzman DW, Shah SJ, Tang F, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954–60.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abraham WT, Lindenfeld J, Ponikowski P, Agostoni P, Butler J, Desai AS, et al. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur Heart J. 2021;42(6):700–10.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spertus JA, Birmingham MC, Nassif M, Damaraju CV, Abbate A, Butler J, et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat Med. 2022;28(4):809–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voors AA, Angermann CE, Teerlink JR, Collins SP, Kosiborod M, Biegus J, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. 2022;28(3):568–74.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK, et al. Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med. 2021;384(2):129–39.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(24):2295–306.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436–46.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Empa-Kidney Collaborative Group. Design, recruitment, and baseline characteristics of the EMPA-KIDNEY trial. Nephrol Dial Transplant. 2022;37(7):1317–29.

    Article 

    Google Scholar 

  • Empa-Kidney Collaborative Group. Empagliflozin in patients with chronic kidney disease. N Engl J Med. 2022;388(2):117–27.

    Article 

    Google Scholar 

  • Requena-Ibanez JA, Santos-Gallego CG, Zafar MU, Badimon JJ. SGLT2-inhibitors on HFpEF patients. Role of ejection fraction. Cardiovasc Drugs Ther. 2022. https://doi.org/10.1007/s10557-022-07371-7.

    Article 
    PubMed 

    Google Scholar 

  • Shah SJ, Katz DH, Deo RC. Phenotypic spectrum of heart failure with preserved ejection fraction. Heart Fail Clin. 2014;10(3):407–18.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murray EM, Greene SJ, Rao VN, Sun JL, Alhanti BA, Blumer V, et al. Machine learning to define phenotypes and outcomes of patients hospitalized for heart failure with preserved ejection fraction: findings from ASCEND-HF. Am Heart J. 2022;254:112–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gevaert AB, Kataria R, Zannad F, Sauer AJ, Damman K, Sharma K, et al. Heart failure with preserved ejection fraction: recent concepts in diagnosis, mechanisms and management. Heart. 2022;108(17):1342–50.

    Article 
    PubMed 

    Google Scholar 

  • Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA. Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation. 2017;136(1):6–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Packer M, Lam CSP, Lund LH, Maurer MS, Borlaug BA. Characterization of the inflammatory-metabolic phenotype of heart failure with a preserved ejection fraction: a hypothesis to explain influence of sex on the evolution and potential treatment of the disease. Eur J Heart Fail. 2020;22(9):1551–67.

    Article 
    PubMed 

    Google Scholar 

  • Pieske B, Tschöpe C, de Boer RA, Fraser AG, Anker SD, Donal E, et al. How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020;22(3):391–412.

    Article 
    PubMed 

    Google Scholar 

  • Cheng RK, Maurer MS. Recognition and Implications of undiagnosed cardiac amyloid patients in HFpEF trials. JACC Heart Fail. 2021;9(11):803–6.

    Article 
    PubMed 

    Google Scholar 

  • Madan N, Kalra D. Clinical evaluation of infiltrative cardiomyopathies resulting in heart failure with preserved ejection fraction. Rev Cardiovasc Med. 2020;21(2):181–90.

    Article 
    PubMed 

    Google Scholar 

  • Oghina S, Bougouin W, Bézard M, Kharoubi M, Komajda M, Cohen-Solal A, et al. The impact of patients with cardiac amyloidosis in HFpEF trials. JACC Heart Fail. 2021;9(3):169–78.

    Article 
    PubMed 

    Google Scholar 

  • Verma S, McGuire DK, Kosiborod MN. Two tales: one story: EMPEROR-Reduced and DAPA-HF. Circulation. 2020;142(23):2201–4.

    Article 
    PubMed 

    Google Scholar 

  • Zannad F, Ferreira JP, Pocock SJ, Zeller C, Anker SD, Butler J, et al. Cardiac and kidney benefits of empagliflozin in heart failure across the spectrum of kidney function: insights from EMPEROR-Reduced. Circulation. 2021;143(4):310–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCausland FR, Lefkowitz MP, Claggett B, Anavekar NS, Senni M, Gori M, et al. Angiotensin-neprilysin inhibition and renal outcomes in heart failure with preserved ejection fraction. Circulation. 2020;142(13):1236–45.

    Article 
    CAS 

    Google Scholar 

  • Haynes R, Judge PK, Staplin N, Herrington WG, Storey BC, Bethel A, et al. Effects of sacubitril/valsartan versus irbesartan in patients with chronic kidney disease. Circulation. 2018;138(15):1505–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • American Diabetes Association Professional Practice Committee. 11. Chronic kidney disease and risk management: standards of medical care in diabetes-2022. Diabetes Care. 2022;45(Suppl 1):S175–84.

  • American Diabetes Association Professional Practice Committee. Addendum. 11. Chronic kidney disease and risk management: standards of medical care in diabetes-2022. Diabetes Care 2022;45(Suppl. 1): S175-S184. Diabetes Care. 2022;45(9):2182–4.

  • Agarwal R, Kolkhof P, Bakris G, Bauersachs J, Haller H, Wada T, et al. Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur Heart J. 2021;42(2):152–61.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med. 2020;383(23):2219–29.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pitt B, Filippatos G, Agarwal R, Anker SD, Bakris GL, Rossing P, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N Engl J Med. 2021;385(24):2252–63.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agarwal R, Filippatos G, Pitt B, Anker SD, Rossing P, Joseph A, et al. Cardiovascular and kidney outcomes with finerenone in patients with type 2 diabetes and chronic kidney disease: the FIDELITY pooled analysis. Eur Heart J. 2022;43(6):474–84.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bayer HealthCare Pharmaceuticals Inc. Kerendia (finerenone) [prescrbing information]. 2022. https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/215341s001lbl.pdf. Accessed 1 Nov 2022.

  • Jhund PS, Solomon SD, Docherty KF, Heerspink HJL, Anand IS, Böhm M, et al. Efficacy of dapagliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: results of DAPA-HF. Circulation. 2021;143(4):298–309.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *