Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, et al. A Pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.
Google Scholar
Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, Khan ST. COVID-19: A global challenge with Old History, Epidemiology and Progress so far. Molecules 2020, 26(1).
Tao K, Tzou PL, Nouhin J, Gupta RK, de Oliveira T, Kosakovsky Pond SL, Fera D, Shafer RW. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. 2021;22(12):757–73.
Google Scholar
Tian D, Sun Y, Xu H, Ye Q. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant. J Med Virol. 2022;94(6):2376–83.
Google Scholar
Gao SJ, Guo H, Luo G. Omicron variant (B.1.1.529) of SARS-CoV-2, a global urgent public health alert! J Med Virol. 2022;94(4):1255–6.
Google Scholar
Gu H, Krishnan P, Ng DYM, Chang LDJ, Liu GYZ, Cheng SSM, Hui MMY, Fan MCY, Wan JHL, Lau LHK, et al. Probable transmission of SARS-CoV-2 Omicron variant in Quarantine Hotel, Hong Kong, China, November 2021. Emerg Infect Dis. 2022;28(2):460–2.
Google Scholar
Islam MR, Hossain MJ. Detection of SARS-CoV-2 Omicron (B.1.1.529) variant has created panic among the people across the world: what should we do right now? J Med Virol. 2022;94(5):1768–9.
Google Scholar
Torjesen I. Covid-19: Omicron may be more transmissible than other variants and partly resistant to existing vaccines, scientists fear. BMJ. 2021;375:n2943.
Google Scholar
Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y, Zhang Y, Pan T, Zhang H, He X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther. 2021;6(1):430.
Google Scholar
Guo Y, Han J, Zhang Y, He J, Yu W, Zhang X, Wu J, Zhang S, Kong Y, Guo Y, et al. SARS-CoV-2 Omicron variant: Epidemiological Features, Biological characteristics, and clinical significance. Front Immunol. 2022;13:877101.
Google Scholar
Piersiala K, Kakabas L, Bruckova A, Starkhammar M, Cardell LO. Acute odynophagia: a new symptom of COVID-19 during the SARS-CoV-2 Omicron variant wave in Sweden. J Intern Med. 2022;292(1):154–61.
Google Scholar
Nyberg T, Ferguson NM, Nash SG, Webster HH, Flaxman S, Andrews N, Hinsley W, Bernal JL, Kall M, Bhatt S, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303–12.
Google Scholar
Armando F, Beythien G, Kaiser FK, Allnoch L, Heydemann L, Rosiak M, Becker S, Gonzalez-Hernandez M, Lamers MM, Haagmans BL, et al. SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters. Nat Commun. 2022;13(1):3519.
Google Scholar
Tang W, Zhang W, Li X, Cheng J, Liu Z, Zhou Q, Guan S. Hematological parameters in patients with bloodstream Infection: a retrospective observational study. J Infect Dev Ctries. 2020;14(11):1264–73.
Google Scholar
Monteiro Júnior JGM, de Oliveira Cipriano Torres D, Filho DCS. Hematological parameters as prognostic biomarkers in patients with Cardiovascular Diseases. Curr Cardiol Rev. 2019;15(4):274–82.
Google Scholar
Huang Z, Fu Z, Huang W, Huang K. Prognostic value of neutrophil-to-lymphocyte ratio in sepsis: a meta-analysis. Am J Emerg Med. 2020;38(3):641–7.
Google Scholar
Lee H, Na W, Lee SB, Ahn CW, Moon JS, Won KC, Shin S. Potential diagnostic hemorheological indexes for chronic Kidney Disease in patients with type 2 Diabetes. Front Physiol. 2019;10:1062.
Google Scholar
Muangto T, Maireang K, Poomtavorn Y, Thaweekul Y, Punyashthira A, Chantawong N, Wisarnsirirak P, Pattaraarchachai J, Suwannarurk K. Study on Preoperative Neutrophil/Lymphocyte (NLR) and Platelet/Lymphocyte ratio (PLR) as a predictive factor in Endometrial Cancer. Asian Pac J Cancer Prev. 2022;23(10):3317–22.
Google Scholar
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, et al. Dysregulation of Immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–8.
Google Scholar
Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607–13.
Google Scholar
Sun C, Zhao H, Han Y, Wang Y, Sun X. The role of inflammasomes in COVID-19: potential therapeutic targets. J Interferon Cytokine Res. 2022;42(8):406–20.
Google Scholar
Dadkhah M, Matin S, Safarzadeh E, Rezaei N, Negaresh M, Salehzadeh H, Matin S, Sharifiazar A, Abazari M. Hematological parameters as diagnostic factors: correlation with severity of COVID-19. Acta Biomed. 2022;93(2):e2022061.
Google Scholar
Taj S, Kashif A, Arzinda Fatima S, Imran S, Lone A, Ahmed Q. Role of hematological parameters in the stratification of COVID-19 Disease severity. Ann Med Surg (Lond). 2021;62:68–72.
Google Scholar
Fois AG, Paliogiannis P, Scano V, Cau S, Babudieri S, Perra R, Ruzzittu G, Zinellu E, Pirina P, Carru C et al. The systemic inflammation index on Admission predicts In-Hospital mortality in COVID-19 patients. Molecules 2020, 25(23).
Ghobadi H, Mohammadshahi J, Javaheri N, Fouladi N, Mirzazadeh Y, Aslani MR. Role of leukocytes and systemic inflammation indexes (NLR, PLR, MLP, dNLR, NLPR, AISI, SIR-I, and SII) on admission predicts in-hospital mortality in non-elderly and elderly COVID-19 patients. Front Med (Lausanne). 2022;9:916453.
Google Scholar
Seyit M, Avci E, Nar R, Senol H, Yilmaz A, Ozen M, Oskay A, Aybek H. Neutrophil to lymphocyte ratio, lymphocyte to monocyte ratio and platelet to lymphocyte ratio to predict the severity of COVID-19. Am J Emerg Med. 2021;40:110–4.
Google Scholar
Ito N, Kitahara Y, Miwata K, Okimoto M, Takafuta T. Comparison of COVID-19 Pneumonia during the SARS-CoV-2 Omicron wave and the previous non-omicron wave in a single facility. Respir Investig. 2022;60(6):772–8.
Google Scholar
Jassat W, Abdool Karim SS, Mudara C, Welch R, Ozougwu L, Groome MJ, Govender N, von Gottberg A, Wolter N, Wolmarans M, et al. Clinical severity of COVID-19 in patients admitted to hospital during the omicron wave in South Africa: a retrospective observational study. Lancet Glob Health. 2022;10(7):e961–9.
Google Scholar
Seyit M, Avci E, Yilmaz A, Kemanci A, Caliskan A, Ozen M, Oskay A, Aybek H, Türkcuer İ. Evaluation of the Diagnostic Value of Hematologic Parameters and ratios in SARS-CoV-2 VOC-202012/01 Mutant Population. Cureus. 2022;14(8):e28285.
Google Scholar
Leventopoulos M, Michou V, Papadimitropoulos M, Vourva E, Manias NG, Kavvadas HP, Nikolopoulos D, Tsilivakos V, Georgoulias G. Evaluation of the Boson rapid ag test vs RT-PCR for use as a self-testing platform. Diagn Microbiol Infect Dis. 2022;104(3):115786.
Google Scholar
Meyhoff TS, Hjortrup PB, Wetterslev J, Sivapalan P, Laake JH, Cronhjort M, Jakob SM, Cecconi M, Nalos M, Ostermann M, et al. Restriction of intravenous fluid in ICU patients with septic shock. N Engl J Med. 2022;386(26):2459–70.
Google Scholar
Nori W, Ghani Zghair MA. Omicron targets upper airways in pediatrics, elderly and unvaccinated population. World J Clin Cases. 2022;10(32):12062–5.
Google Scholar
Zhou X, Huang X, Sun T, Jin X, Tian Z, Xue M, Kang J, Gao B, Xu A, Chen Y, et al. Chronological changes of viral shedding in adult inpatients with Omicron Infection in Shanghai, China. Front Immunol. 2023;14:1090498.
Google Scholar
Amoo OS, Onyia N, Onuigbo TI, Vitalis SU, Davies-Bolorunduro OF, Oraegbu JI, Adeniji ET, Obi JC, Abodunrin ON, Ikemefuna AS, et al. Significance of hematologic abnormalities in COVID-19 severity among infected patients in Lagos, Nigeria. Bull Natl Res Cent. 2022;46(1):275.
Google Scholar
Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA. Hematological findings and Complications of COVID-19. Am J Hematol. 2020;95(7):834–47.
Google Scholar
Shuai H, Chan JF, Hu B, Chai Y, Yuen TT, Yin F, Huang X, Yoon C, Hu JC, Liu H, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B.1.1.529 Omicron. Nature. 2022;603(7902):693–9.
Google Scholar
Rahman A, Niloofa R, Jayarajah U, De Mel S, Abeysuriya V, Seneviratne SL. Hematological abnormalities in COVID-19: a narrative review. Am J Trop Med Hyg. 2021;104(4):1188–201.
Google Scholar
Wei T, Li J, Cheng Z, Jiang L, Zhang J, Wang H, Zhou L. Hematological characteristics of COVID-19 patients with Fever infected by the Omicron variant in Shanghai: a retrospective cohort study in China. J Clin Lab Anal. 2023;37(1):e24808.
Google Scholar
Qiu W, Shi Q, Chen F, Wu Q, Yu X, Xiong L. The derived neutrophil to lymphocyte ratio can be the predictor of prognosis for COVID-19 Omicron BA.2 infected patients. Front Immunol. 2022;13:1065345.
Google Scholar
Leung JM, Niikura M, Yang CWT, Sin DD. COVID-19 and COPD. Eur Respir J 2020, 56(2).
Xia W, Tan Y, Hu S, Li C, Jiang T. Predictive value of systemic Immune-inflammation index and neutrophil-to-lymphocyte ratio in patients with severe COVID-19. Clin Appl Thromb Hemost. 2022;28:10760296221111391.
Google Scholar
Teymouri M, Mollazadeh S, Mortazavi H, Naderi Ghale-Noie Z, Keyvani V, Aghababaei F, Hamblin MR, Abbaszadeh-Goudarzi G, Pourghadamyari H, Hashemian SMR, et al. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol Res Pract. 2021;221:153443.
Google Scholar
Alamri SS, Alsaieedi A, Khouqeer Y, Afeef M, Alharbi S, Algaissi A, Alghanmi M, Altorki T, Zawawi A, Alfaleh MA, et al. The importance of combining serological testing with RT-PCR assays for efficient detection of COVID-19 and higher diagnostic accuracy. PeerJ. 2023;11:e15024.
Google Scholar
Alexopoulos H, Trougakos IP, Dimopoulos MA, Terpos E. Serological testing for SARS-CoV-2: advancements and future challenges. Eur J Intern Med. 2023;108:104–5.
Google Scholar
Yuan X, Huang W, Ye B, Chen C, Huang R, Wu F, Wei Q, Zhang W, Hu J. Changes of hematological and immunological parameters in COVID-19 patients. Int J Hematol. 2020;112(4):553–9.
Google Scholar
Usul E, Şan İ, Bekgöz B, Şahin A. Role of hematological parameters in COVID-19 patients in the emergency room. Biomark Med. 2020;14(13):1207–15.
Google Scholar
Alamin AA, Yahia AIO. Hematological parameters predict Disease Severity and Progression in patients with COVID-19: a review article. Clin Lab 2021, 67(1).
Guo Z, Zhang Z, Prajapati M, Li Y. Lymphopenia caused by Virus Infections and the mechanisms Beyond. Viruses 2021, 13(9).
Fathi N, Rezaei N. Lymphopenia in COVID-19: therapeutic opportunities. Cell Biol Int. 2020;44(9):1792–7.
Google Scholar
Kundura L, Gimenez S, Cezar R, André S, Younas M, Lin YL, Portalès P, Lozano C, Boulle C, Reynes J, et al. Angiotensin II induces reactive oxygen species, DNA damage, and T-cell apoptosis in severe COVID-19. J Allergy Clin Immunol. 2022;150(3):594–603e592.
Google Scholar
Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, Aschenbrenner AC. Neutrophils in COVID-19. Front Immunol. 2021;12:652470.
Google Scholar
Chang H, Li J. Lymphocyte * neutrophil count decreased in SARS-CoV-2 Omicron patients in Shanghai with no significant change in CRP and SAA. J Clin Lab Anal. 2022;36(10):e24671.
Google Scholar
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280e278.
Google Scholar
Zhang S, Liu Y, Wang X, Yang L, Li H, Wang Y, Liu M, Zhao X, Xie Y, Yang Y, et al. SARS-CoV-2 binds platelet ACE2 to enhance Thrombosis in COVID-19. J Hematol Oncol. 2020;13(1):120.
Google Scholar
Chen YE, Ren FL, Gu X, Zhang HJ, Li WJ, Yang H, Shang FQ. Clinical value of platelets and Coagulation parameters in Predicting the severity of Delta variant SARS-CoV-2. Pathobiology. 2023;90(4):241–50.
Google Scholar
Eissa M, Shaarawy S, Abdellateif MS. The role of different inflammatory indices in the diagnosis of COVID-19. Int J Gen Med. 2021;14:7843–53.
Google Scholar
Citu C, Gorun F, Motoc A, Sas I, Gorun OM, Burlea B, Tuta-Sas I, Tomescu L, Neamtu R, Malita D et al. The predictive role of NLR, d-NLR, MLR, and SIRI in COVID-19 mortality. Diagnostics (Basel) 2022, 12(1).
Karimi A, Shobeiri P, Kulasinghe A, Rezaei N. Novel systemic inflammation markers to Predict COVID-19 prognosis. Front Immunol. 2021;12:741061.
Google Scholar
Zhang Y, Xing Z, Zhou K, Jiang S. The predictive role of systemic inflammation response index (SIRI) in the prognosis of Stroke patients. Clin Interv Aging. 2021;16:1997–2007.
Google Scholar
Zhu K, Ma S, Chen H, Xie J, Huang D, Fu C, Ma G, Huang Y. Value of Laboratory indicators in Predicting Pneumonia in Symptomatic COVID-19 patients infected with the SARS-CoV-2 Omicron variant. Infect Drug Resist. 2023;16:1159–70.
Google Scholar
Güçlü E, Kocayiğit H, Okan HD, Erkorkmaz U, Yürümez Y, Yaylacı S, Koroglu M, Uzun C, Karabay O. Effect of COVID-19 on platelet count and its indices. Rev Assoc Med Bras (1992) 2020, 66(8):1122–1127.
Guo X, Jie Y, Ye Y, Chen P, Li X, Gao Z, Li G, Deng H, Zheng Y, Lin B, et al. Upper respiratory tract viral ribonucleic acid load at Hospital Admission is Associated with Coronavirus Disease 2019 Disease Severity. Open Forum Infect Dis. 2020;7(7):ofaa282.
Google Scholar
Chinese Center for Disease Control and Prevention. COVID-19 Clinical and Surveillance Data — December 9, 2022 to January 30, 2023, China. 2023. https://weekly.chinacdc.cn/fileCCDCW/cms/news/info/upload/13642969-aea5-40f9-aa10-165df32c50c0.pdf. [2023-10-20]. (In English).
Joint Prevention and Control Mechanism of State Council. Notice on further optimizing epidemic prevention and control twenty measures of COVID-19.2022 https://www.gov.cn/xinwen/2022-11/11/content_5726144.htm. [2023-10-20]. (In Chinese).
Joint Prevention and Control Mechanism of State Council. Notice on further optimizing epidemic prevention and control measures of COVID-19. 2022. https://www.gov.cn/xinwen/2022-12/07/content_5730475.htm [2023-10-20]. (In Chinese).
Fu D, He G, Li H, Tan H, Ji X, Lin Z, Hu J, Liu T, Xiao J, Liang X, et al. Effectiveness of COVID-19 vaccination against SARS-CoV-2 Omicron variant Infection and symptoms – China, December 2022-February 2023. China CDC Wkly. 2023;5(17):369–73.
Google Scholar