Systematic review of sporozoite infection rate of Anopheles mosquitoes in Ethiopia, 2001–2021

  • WHO. World malaria report 2020. Geneva: World Health Organization; 2020.

    Google Scholar 

  • WHO. World malaria report 2018. Geneva: World Health Organization; 2018.

    Google Scholar 

  • Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci. 2004;1:2375–80.

    Google Scholar 

  • Reiter P. Climate change and highland malaria in the tropics. Abstract of presentation to avoiding dangerous climate change, international symposium on the stabilization of greenhouse gas concentration. Exeter: Hadley Centre, Met officer; 2004.

  • Hay SI, Rogers DG, Randpolph SE, Stern DI, Cox J, Shanks GD, et al. Hot topic or hot air? Climate change and malaria resurgence in East African highlands. Trends Parasitol. 2002;8:530–4.

    Google Scholar 

  • Williams J, Pinto J. Training manual on malaria entomology for entomology and vector control technicians (basic level). USAID. Washington, DC; 2012:78.

  • Harbach RE. The Phylogeny and classification of Anopheles. Anopheles mosquitoes—new insights into malaria vectors. InTech; 2013.

  • Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Irish SR, Kyalo D, Snow RW, Coetzee M. Updated list of Anopheles species (Diptera: Culicidae) by country in the Afrotropical region and associated islands. Zootaxa. 2020;4747:4747.

    Google Scholar 

  • Gaffigan TV, Wilkerson RC, Pecor JE, Stoffer JA, Anderson T. Systematic catalog of Culicidae. Walter reed biosystematics unit, division of entomology, Walter reed army institute of research, Silver Spring; 2013.

  • Kyalo D, Amratia P, Mundia CW, Mbogo CM, Coetzee M, Snow RW. A geo-coded inventory of anophelines in the Afrotropical region south of the Sahara: 1898–2016. Wellcome Open Res. 2017;2:57.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaleta KT, Hill SR, Seyoum E, Balkew M, Gebre-Michael T, Ignell R, et al. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in western Ethiopia. Malar J. 2013;12:350.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Solomon K, Yihenew A, Eline B, Habte T, Dawit A, Beyene P. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop Med Int Health. 2010;15:41–50.

    Google Scholar 

  • White GB, Tesfaye F, Boreham PFL, Lemma G. Malaria vector capacity of Anopheles arabiensis and Anopheles quadriannulatus in Ethiopia; chromosomal interactions of after 6 years storage of field preparations. Trans R Soc Trop Med Hyg. 1980;74:683–4.

    Google Scholar 

  • Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti. Horn of Africa Acta Trop. 2014;139:39–43.

    PubMed 

    Google Scholar 

  • Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.

    PubMed 

    Google Scholar 

  • WHO. Vector alert: Anopheles stephensi invasion and spread. Geneva: World Health Organization; 2019.

    Google Scholar 

  • WHO. WHO initiative to stop the spread of Anopheles stephensi in Africa. Geneva: World Health Organization; 2022.

    Google Scholar 

  • Ndenga BA, Wambua S, Owuor KO, Omukuti R, Chemutai S, Arabu D, et al. Serendipitous detection of Anopheles stephensi in Kisumu, Kenya in June 2022. MedRxiv. 2022;2023:2023–105.

    Google Scholar 

  • Lemma W, Alemu K, Birhanie M, Worku L, Niedbalski J, McDowell MA, et al. Anopheles cinereus implicated as a vector of malaria transmission in the highlands of north-west Ethiopia. Parasit Vectors. 2019;12:557.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fontenille D, Meunier JY, Nkondjio CA, Tchuinkam T. Use of circumsporozoite protein enzyme-linked immunosorbent assay compared with microscopic examination of salivary glands for calculation of malaria infectivity rates in mosquitoes (Diptera: Culicidae) from Cameroon. J Med Entomol. 2001;38:451–4.

    CAS 
    PubMed 

    Google Scholar 

  • Burkot TR, Williams JL, Schneider I. Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984;33:783–8.

    CAS 
    PubMed 

    Google Scholar 

  • Marie A, Boissiere A, Tsapi MT, Poinsignon A, Awono-Ambéné PH, Morlais I, et al. Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae. Malar J. 2013;12:224.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasan AU, Suguri S, Sattabongkot J, Fujimoto C, Amakawa M, Harada M, et al. Implementation of a novel PCR based method for detecting malaria parasites from naturally infected mosquitoes in Papua New Guinea. Malar J. 2009;8:182.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinheirob VE, Thaithongc S, Browna KN. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61:315–20.

    Google Scholar 

  • Wilson MD, Ofosu-Okyere A, Okoli AU, McCall PJ, Snounou G. Direct comparison of microscopy and polymerase chain reaction for the detection of Plasmodium sporozoites in salivary glands of mosquitoes. Trans R Soc Trop Med Hyg. 1998;92:482–3.

    CAS 
    PubMed 

    Google Scholar 

  • Li F, Niu C, Ye B. Nested polymerase chain reaction in detection of Plasmodium vivax sporozoites in mosquitoes. Chin Med J. 2001;114:654–7.

    CAS 
    PubMed 

    Google Scholar 

  • Vaughan JA, Noden BH, Beier JC. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J Parasitol. 1992;1992:716–24.

    Google Scholar 

  • Federal Ministry of Health. Entomological profile of malaria in Ethiopia. FMoH. Addis Ababa, Ethiopia. 2007.

  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65.

    PubMed 

    Google Scholar 

  • Joanna Briggs Institute. Joanna briggs institute critical appraisal checklist for studies reporting prevalence data. Adelaide: JBI Libr Syst Rev. 2017;2017:1.

  • Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, et al. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ. 1987;65:39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beier JC, Perkins PV, Wirtz RA, Whitmire RE, Mugambi M, Hockmeyer WT. Field evaluation of an Enzyme-Linked Immunosorbent Assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am J Trop Med Hyg. 1987;36:459–68.

    CAS 
    PubMed 

    Google Scholar 

  • Wirtz RA, Sattabongkot J, Hall T, Burkot TR, Rosenberg R. Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax-VK247 sporozoites. J Med Entomol. 1992;29:854–7.

    CAS 
    PubMed 

    Google Scholar 

  • Tadesse FG, Ashine T, Teka H, Esayas E, Messenger LA, Chali W, et al. Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. Emerg Infect Dis. 2021;27:603.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tesfaye S, Belyhun Y, Teklu T, Mengesha T, Petros B. Malaria prevalence pattern observed in the highland fringe of Butajira, southern Ethiopia: a longitudinal study from parasitological and entomological survey. Malar J. 2011;10:153.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kibret S, Wilson GG, Tekie H, Petros B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar J. 2014;13:360.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Getaneh A, Yimer M, Alemu M, Dejazmach Z, Alehegn M, Tegegne B. Species composition, parous rate, and infection rate of Anopheles mosquitoes (Diptera: Culicidae) in Bahir Dar city administration, northwest Ethiopia. J Med Entomol. 2021;58:1874–9.

    PubMed 

    Google Scholar 

  • Taye A, Hadis M, Adugna N, Tilahun D, Wirtz RA. Biting behavior and Plasmodium infection rates of Anopheles arabiensis from Sille. Ethiopia Acta Trop. 2006;97:50–4.

    PubMed 

    Google Scholar 

  • Animut A, Balkew M, Gebre-Michael T, Lindtjørn B. Blood meal sources and entomological inoculation rates of anophelines along a highland altitudinal transect in south-central Ethiopia. Malar J. 2013;12:76.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster-randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Habtewold T, Walker AR, Curtis CF, Osir EO, Thapa N. The feeding behaviour and Plasmodium infection of Anopheles mosquitoes in southern Ethiopia in relation to use of insecticide-treated livestock for malaria control. Trans R Soc Trop Med Hyg. 2001;95:584–6.

    CAS 
    PubMed 

    Google Scholar 

  • Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors. 2016;9:527.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Taye B, Lelisa K, Emana D, Asale A, Yewhalaw D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. J Insect Sci. 2016;16:6.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kibret S, Alemu Y, Boelee E, Tekie H, Alemu D, Petros B. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop Med Int Health. 2010;15:41–50.

    PubMed 

    Google Scholar 

  • Lelisa K, Asale A, Taye B, Emana D, Yewhalaw D. Anopheline mosquitoes behaviour and entomological monitoring in southwestern Ethiopia. J Vector Borne Dis. 2017;54:240.

    PubMed 

    Google Scholar 

  • Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B. Entomologic inoculation rates of Anopheles arabiensis in Southwestern Ethiopia. Am J Trop Med Hyg. 2013;89:466.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abraham M, Massebo F, Lindtjørn B. High entomological inoculation rate of malaria vectors in area of high coverage of interventions in Southwest Ethiopia: implication for residual malaria transmission. Parasit Epidemiol Control. 2017;2:61–9.

    Google Scholar 

  • Degefa T, Zeynudin A, Godesso A, Michael YH, Eba K, Zemene E, et al. Malaria incidence and assessment of entomological indices among resettled communities in Ethiopia: a longitudinal study. Malar J. 2015;14:24.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eba K, Habtewold T, Yewhalaw D, Christophides GK, Duchateau L. Anopheles arabiensis hotspots along intermittent rivers drive malaria dynamics in semi-arid areas of Central Ethiopia. Malar J. 2021;20:154.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daygena TY, Massebo F, Lindtjørn B. Variation in species composition and infection rates of Anopheles mosquitoes at different altitudinal transects, and the risk of malaria in the highland of Dirashe Woreda, south Ethiopia. Parasit Vectors. 2017;10:343.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Getachew D, Gebre-Michael T, Balkew M, Tekie H. Species composition, blood meal hosts and Plasmodium infection rates of Anopheles mosquitoes in Ghibe River Basin, southwestern Ethiopia. Parasit Vectors. 2019;12:257.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zemene E, Belay DB, Tiruneh A, Lee MC, Yewhalaw D, Yan G. Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: implications for residual transmission. BMC Infect Dis. 2021;21:882.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dugassa S, Murphy M, Chibsa S, Tadesse Y, Yohannes G, Lorenz LM, et al. Malaria in migrant agricultural workers in western Ethiopia: entomological assessment of malaria transmission risk. Malar J. 2021;20:95.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Degefa T, Githeko AK, Lee MC, Yan G, Yewhalaw D. Patterns of human exposure to early evening and outdoor biting mosquitoes and residual malaria transmission in Ethiopia. Acta Trop. 2021;216:105837.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fettene M, Hunt RH, Coetzee M, Tessema F. Behaviour of Anopheles arabiensis and Anopheles quadriannulatus sp. B mosquitoes and malaria transmission in southwestern Ethiopia. Afr Entomol. 2004;12:83–7.

    Google Scholar 

  • Aklilu E. Species composition, seasonal variation and roles of Anopheles mosquitoes in the transmission of malaria in Koka villages, Central Ethiopia (Doctoral dissertation, Addis Ababa University).

  • Kenea O, Balkew M, Tekie H, Deressa W, Loha E, Lindtjørn B, et al. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial. Malar J. 2019;18:182.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kibret S, Wilson GG, Ryder D, Tekie H, Petros B. Malaria impact of large dams at different eco-epidemiological settings in Ethiopia. Trop Med Health. 2017;45:4.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Getawen SK, Ashine T, Massebo F, Woldeyes D, Lindtjørn B. Exploring the impact of house screening intervention on entomological indices and incidence of malaria in Arba Minch town, southwest Ethiopia: a randomized control trial. Acta Trop. 2018;181:84–94.

    PubMed 

    Google Scholar 

  • Yewhalaw D, Kelel M, Getu E, Temam S, Wessel G. Blood meal sources and sporozoite rates of Anophelines in Gilgel-Gibe dam area, Southwestern Ethiopia. J Parasitol Vector Biol. 2014;2014:1.

    Google Scholar 

  • Kibret S, Lautze J, Boelee E, McCartney M. How does Ethiopian dam increase malaria? Entomological determinants around the Koka reservoir. Trop Med Int Health. 2012;17:1320–8.

    PubMed 

    Google Scholar 

  • Kindu M, Aklilu E, Balkew M, Gebre-Michael T. Study on the species composition and ecology of anophelines in Addis Zemen, South Gondar, Ethiopia. Parasit Vectors. 2018;11:215.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nigatu W, Asale A, Massebo F, Yohannes M, Mekuriaw W, Wuletaw Y, et al. Entomological surveillance in the context of malaria elimination in some selected sentiniel sites of Ethiopia. Ethiop J Public Health Nutr. 2020;3:62–71.

    Google Scholar 

  • Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar J. 2021;20:263.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol. 2006;20:425–37.

    CAS 
    PubMed 

    Google Scholar 

  • Bekele D, Belyhun Y, Petros B, Deressa W. Assessment of the effect of insecticide-treated nets and indoor residual spraying for malaria control in three rural kebeles of Adami Tulu District, South Central Ethiopia. Malar J. 2012;11:127.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adugna F, Wale M, Nibret E. Review of Anopheles mosquito species, abundance, and distribution in Ethiopia. J Trop Med. 2021;2021:6726622.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Krafsur ES. Anopheles nili as a vector of malaria in a lowland region of Ethiopia. Bull World Health Organ. 1970;42:466.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aschale Y, Ayehu A, Worku L, Addisu A, Zeleke AJ, Bayih AG, et al. Anopheles gambiae s.l (Diptera: Culicidae) seasonal abundance, abdominal status and parity rates in Metema-Armachiho lowland, Northwest Ethiopia. BMC Infect Dis. 2020;20:333.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adugna T, Getu E, Yewhelew D. Parous rate and longevity of anophelines mosquitoes in Bure district, northwestern Ethiopia. PLoS ONE. 2022;17:e0263295.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adugna T, Getu E, Yewhalaw D. Species diversity and distribution of Anopheles mosquitoes in Bure district, Northwestern Ethiopia. Heliyon. 2020;6:e05063.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balkew M, Gebre-Michael T, Hailu A. Insecticide susceptibility level of Anopheles arabiensis in two agro-development localities in eastern Ethiopia. Parassitologia. 2003;45:1–3.

    CAS 
    PubMed 

    Google Scholar 

  • Carter TE, Yared S, Hansel S, Lopez K, Janies D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 2019;18:135.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Dinh Trung H, et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J. 2011;10:195.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lochouarn L, Fontenille D. ELISA detection of malaria sporozoites: false positive results in Anopheles gambiae s.l. associated with bovine bloodmeals. Trans R Soc Trop Med Hyg. 1999;93:101–2.

    CAS 
    PubMed 

    Google Scholar 

  • Somboon P, Morakote N, Koottathep S, Trisanarom U. Detection of sporozoites of Plasmodium vivax and Plasmodium falciparum in mosquitoes by ELISA: false positivity associated with bovine and swine blood. Trans R Soc Trop Med Hyg. 1993;87:322–4.

    CAS 
    PubMed 

    Google Scholar 

  • Hendershot AL, Esayas E, Sutcliffe AC, Irish SR, Gadisa E, Tadesse FG, et al. A comparison of PCR and ELISA methods to detect different stages of Plasmodium vivax in Anopheles arabiensis. Parasit Vectors. 2021;14:473.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Echeverry DF, Deason NA, Makuru V, Davidson J, Xiao H, Niedbalski J, et al. Fast and robust single PCR for Plasmodium sporozoite detection in mosquitoes using the cytochrome oxidase I gene. Malar J. 2017;16:230.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumpitak C, Nguitragool W, Cui L, Sattabongkot J, Bantuchai S. Detection of Plasmodium sporozoites in Anopheles mosquitoes using an enzyme-linked immunosorbent assay. J Vis Exp. 2021;30:e63158.

    Google Scholar 

  • Alemu A, Fuehrer HP, Getnet G, Tessema B, Noedl H. Plasmodium ovale curtisi and Plasmodium ovale wallikeri in North-West Ethiopia. Malar J. 2013;12:346.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Assefa A, Ahmed AA, Deressa W, Wilson GG, Kebede A, Mohammed H, et al. Assessment of subpatent Plasmodium infection in northwestern Ethiopia. Malar J. 2020;19:108.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *