WHO. World malaria report 2020. Geneva: World Health Organization; 2020.
WHO. World malaria report 2018. Geneva: World Health Organization; 2018.
Zhou G, Minakawa N, Githeko AK, Yan G. Association between climate variability and malaria epidemics in the East African highlands. Proc Natl Acad Sci. 2004;1:2375–80.
Reiter P. Climate change and highland malaria in the tropics. Abstract of presentation to avoiding dangerous climate change, international symposium on the stabilization of greenhouse gas concentration. Exeter: Hadley Centre, Met officer; 2004.
Hay SI, Rogers DG, Randpolph SE, Stern DI, Cox J, Shanks GD, et al. Hot topic or hot air? Climate change and malaria resurgence in East African highlands. Trends Parasitol. 2002;8:530–4.
Williams J, Pinto J. Training manual on malaria entomology for entomology and vector control technicians (basic level). USAID. Washington, DC; 2012:78.
Harbach RE. The Phylogeny and classification of Anopheles. Anopheles mosquitoes—new insights into malaria vectors. InTech; 2013.
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5:69.
Google Scholar
Irish SR, Kyalo D, Snow RW, Coetzee M. Updated list of Anopheles species (Diptera: Culicidae) by country in the Afrotropical region and associated islands. Zootaxa. 2020;4747:4747.
Gaffigan TV, Wilkerson RC, Pecor JE, Stoffer JA, Anderson T. Systematic catalog of Culicidae. Walter reed biosystematics unit, division of entomology, Walter reed army institute of research, Silver Spring; 2013.
Kyalo D, Amratia P, Mundia CW, Mbogo CM, Coetzee M, Snow RW. A geo-coded inventory of anophelines in the Afrotropical region south of the Sahara: 1898–2016. Wellcome Open Res. 2017;2:57.
Google Scholar
Jaleta KT, Hill SR, Seyoum E, Balkew M, Gebre-Michael T, Ignell R, et al. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in western Ethiopia. Malar J. 2013;12:350.
Google Scholar
Solomon K, Yihenew A, Eline B, Habte T, Dawit A, Beyene P. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop Med Int Health. 2010;15:41–50.
White GB, Tesfaye F, Boreham PFL, Lemma G. Malaria vector capacity of Anopheles arabiensis and Anopheles quadriannulatus in Ethiopia; chromosomal interactions of after 6 years storage of field preparations. Trans R Soc Trop Med Hyg. 1980;74:683–4.
Faulde MK, Rueda LM, Khaireh BA. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti. Horn of Africa Acta Trop. 2014;139:39–43.
Google Scholar
Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–6.
Google Scholar
WHO. Vector alert: Anopheles stephensi invasion and spread. Geneva: World Health Organization; 2019.
WHO. WHO initiative to stop the spread of Anopheles stephensi in Africa. Geneva: World Health Organization; 2022.
Ndenga BA, Wambua S, Owuor KO, Omukuti R, Chemutai S, Arabu D, et al. Serendipitous detection of Anopheles stephensi in Kisumu, Kenya in June 2022. MedRxiv. 2022;2023:2023–105.
Lemma W, Alemu K, Birhanie M, Worku L, Niedbalski J, McDowell MA, et al. Anopheles cinereus implicated as a vector of malaria transmission in the highlands of north-west Ethiopia. Parasit Vectors. 2019;12:557.
Google Scholar
Fontenille D, Meunier JY, Nkondjio CA, Tchuinkam T. Use of circumsporozoite protein enzyme-linked immunosorbent assay compared with microscopic examination of salivary glands for calculation of malaria infectivity rates in mosquitoes (Diptera: Culicidae) from Cameroon. J Med Entomol. 2001;38:451–4.
Google Scholar
Burkot TR, Williams JL, Schneider I. Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am J Trop Med Hyg. 1984;33:783–8.
Google Scholar
Marie A, Boissiere A, Tsapi MT, Poinsignon A, Awono-Ambéné PH, Morlais I, et al. Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae. Malar J. 2013;12:224.
Google Scholar
Hasan AU, Suguri S, Sattabongkot J, Fujimoto C, Amakawa M, Harada M, et al. Implementation of a novel PCR based method for detecting malaria parasites from naturally infected mosquitoes in Papua New Guinea. Malar J. 2009;8:182.
Google Scholar
Pinheirob VE, Thaithongc S, Browna KN. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61:315–20.
Wilson MD, Ofosu-Okyere A, Okoli AU, McCall PJ, Snounou G. Direct comparison of microscopy and polymerase chain reaction for the detection of Plasmodium sporozoites in salivary glands of mosquitoes. Trans R Soc Trop Med Hyg. 1998;92:482–3.
Google Scholar
Li F, Niu C, Ye B. Nested polymerase chain reaction in detection of Plasmodium vivax sporozoites in mosquitoes. Chin Med J. 2001;114:654–7.
Google Scholar
Vaughan JA, Noden BH, Beier JC. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae. J Parasitol. 1992;1992:716–24.
Federal Ministry of Health. Entomological profile of malaria in Ethiopia. FMoH. Addis Ababa, Ethiopia. 2007.
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65.
Google Scholar
Joanna Briggs Institute. Joanna briggs institute critical appraisal checklist for studies reporting prevalence data. Adelaide: JBI Libr Syst Rev. 2017;2017:1.
Wirtz RA, Zavala F, Charoenvit Y, Campbell GH, Burkot TR, Schneider I, et al. Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development. Bull World Health Organ. 1987;65:39.
Google Scholar
Beier JC, Perkins PV, Wirtz RA, Whitmire RE, Mugambi M, Hockmeyer WT. Field evaluation of an Enzyme-Linked Immunosorbent Assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya. Am J Trop Med Hyg. 1987;36:459–68.
Google Scholar
Wirtz RA, Sattabongkot J, Hall T, Burkot TR, Rosenberg R. Development and evaluation of an enzyme-linked immunosorbent assay for Plasmodium vivax-VK247 sporozoites. J Med Entomol. 1992;29:854–7.
Google Scholar
Tadesse FG, Ashine T, Teka H, Esayas E, Messenger LA, Chali W, et al. Anopheles stephensi mosquitoes as vectors of Plasmodium vivax and falciparum, Horn of Africa, 2019. Emerg Infect Dis. 2021;27:603.
Google Scholar
Tesfaye S, Belyhun Y, Teklu T, Mengesha T, Petros B. Malaria prevalence pattern observed in the highland fringe of Butajira, southern Ethiopia: a longitudinal study from parasitological and entomological survey. Malar J. 2011;10:153.
Google Scholar
Kibret S, Wilson GG, Tekie H, Petros B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar J. 2014;13:360.
Google Scholar
Getaneh A, Yimer M, Alemu M, Dejazmach Z, Alehegn M, Tegegne B. Species composition, parous rate, and infection rate of Anopheles mosquitoes (Diptera: Culicidae) in Bahir Dar city administration, northwest Ethiopia. J Med Entomol. 2021;58:1874–9.
Google Scholar
Taye A, Hadis M, Adugna N, Tilahun D, Wirtz RA. Biting behavior and Plasmodium infection rates of Anopheles arabiensis from Sille. Ethiopia Acta Trop. 2006;97:50–4.
Google Scholar
Animut A, Balkew M, Gebre-Michael T, Lindtjørn B. Blood meal sources and entomological inoculation rates of anophelines along a highland altitudinal transect in south-central Ethiopia. Malar J. 2013;12:76.
Google Scholar
Gari T, Kenea O, Loha E, Deressa W, Hailu A, Balkew M, et al. Malaria incidence and entomological findings in an area targeted for a cluster-randomized controlled trial to prevent malaria in Ethiopia: results from a pilot study. Malar J. 2016;15:145.
Google Scholar
Habtewold T, Walker AR, Curtis CF, Osir EO, Thapa N. The feeding behaviour and Plasmodium infection of Anopheles mosquitoes in southern Ethiopia in relation to use of insecticide-treated livestock for malaria control. Trans R Soc Trop Med Hyg. 2001;95:584–6.
Google Scholar
Kenea O, Balkew M, Tekie H, Gebre-Michael T, Deressa W, Loha E, et al. Human-biting activities of Anopheles species in south-central Ethiopia. Parasit Vectors. 2016;9:527.
Google Scholar
Taye B, Lelisa K, Emana D, Asale A, Yewhalaw D. Seasonal dynamics, longevity, and biting activity of anopheline mosquitoes in southwestern Ethiopia. J Insect Sci. 2016;16:6.
Google Scholar
Kibret S, Alemu Y, Boelee E, Tekie H, Alemu D, Petros B. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop Med Int Health. 2010;15:41–50.
Google Scholar
Lelisa K, Asale A, Taye B, Emana D, Yewhalaw D. Anopheline mosquitoes behaviour and entomological monitoring in southwestern Ethiopia. J Vector Borne Dis. 2017;54:240.
Google Scholar
Massebo F, Balkew M, Gebre-Michael T, Lindtjørn B. Entomologic inoculation rates of Anopheles arabiensis in Southwestern Ethiopia. Am J Trop Med Hyg. 2013;89:466.
Google Scholar
Abraham M, Massebo F, Lindtjørn B. High entomological inoculation rate of malaria vectors in area of high coverage of interventions in Southwest Ethiopia: implication for residual malaria transmission. Parasit Epidemiol Control. 2017;2:61–9.
Degefa T, Zeynudin A, Godesso A, Michael YH, Eba K, Zemene E, et al. Malaria incidence and assessment of entomological indices among resettled communities in Ethiopia: a longitudinal study. Malar J. 2015;14:24.
Google Scholar
Eba K, Habtewold T, Yewhalaw D, Christophides GK, Duchateau L. Anopheles arabiensis hotspots along intermittent rivers drive malaria dynamics in semi-arid areas of Central Ethiopia. Malar J. 2021;20:154.
Google Scholar
Daygena TY, Massebo F, Lindtjørn B. Variation in species composition and infection rates of Anopheles mosquitoes at different altitudinal transects, and the risk of malaria in the highland of Dirashe Woreda, south Ethiopia. Parasit Vectors. 2017;10:343.
Google Scholar
Getachew D, Gebre-Michael T, Balkew M, Tekie H. Species composition, blood meal hosts and Plasmodium infection rates of Anopheles mosquitoes in Ghibe River Basin, southwestern Ethiopia. Parasit Vectors. 2019;12:257.
Google Scholar
Zemene E, Belay DB, Tiruneh A, Lee MC, Yewhalaw D, Yan G. Malaria vector dynamics and utilization of insecticide-treated nets in low-transmission setting in Southwest Ethiopia: implications for residual transmission. BMC Infect Dis. 2021;21:882.
Google Scholar
Dugassa S, Murphy M, Chibsa S, Tadesse Y, Yohannes G, Lorenz LM, et al. Malaria in migrant agricultural workers in western Ethiopia: entomological assessment of malaria transmission risk. Malar J. 2021;20:95.
Google Scholar
Degefa T, Githeko AK, Lee MC, Yan G, Yewhalaw D. Patterns of human exposure to early evening and outdoor biting mosquitoes and residual malaria transmission in Ethiopia. Acta Trop. 2021;216:105837.
Google Scholar
Fettene M, Hunt RH, Coetzee M, Tessema F. Behaviour of Anopheles arabiensis and Anopheles quadriannulatus sp. B mosquitoes and malaria transmission in southwestern Ethiopia. Afr Entomol. 2004;12:83–7.
Aklilu E. Species composition, seasonal variation and roles of Anopheles mosquitoes in the transmission of malaria in Koka villages, Central Ethiopia (Doctoral dissertation, Addis Ababa University).
Kenea O, Balkew M, Tekie H, Deressa W, Loha E, Lindtjørn B, et al. Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial. Malar J. 2019;18:182.
Google Scholar
Kibret S, Wilson GG, Ryder D, Tekie H, Petros B. Malaria impact of large dams at different eco-epidemiological settings in Ethiopia. Trop Med Health. 2017;45:4.
Google Scholar
Getawen SK, Ashine T, Massebo F, Woldeyes D, Lindtjørn B. Exploring the impact of house screening intervention on entomological indices and incidence of malaria in Arba Minch town, southwest Ethiopia: a randomized control trial. Acta Trop. 2018;181:84–94.
Google Scholar
Yewhalaw D, Kelel M, Getu E, Temam S, Wessel G. Blood meal sources and sporozoite rates of Anophelines in Gilgel-Gibe dam area, Southwestern Ethiopia. J Parasitol Vector Biol. 2014;2014:1.
Kibret S, Lautze J, Boelee E, McCartney M. How does Ethiopian dam increase malaria? Entomological determinants around the Koka reservoir. Trop Med Int Health. 2012;17:1320–8.
Google Scholar
Kindu M, Aklilu E, Balkew M, Gebre-Michael T. Study on the species composition and ecology of anophelines in Addis Zemen, South Gondar, Ethiopia. Parasit Vectors. 2018;11:215.
Google Scholar
Nigatu W, Asale A, Massebo F, Yohannes M, Mekuriaw W, Wuletaw Y, et al. Entomological surveillance in the context of malaria elimination in some selected sentiniel sites of Ethiopia. Ethiop J Public Health Nutr. 2020;3:62–71.
Balkew M, Mumba P, Yohannes G, Abiy E, Getachew D, Yared S, et al. An update on the distribution, bionomics, and insecticide susceptibility of Anopheles stephensi in Ethiopia, 2018–2020. Malar J. 2021;20:263.
Google Scholar
Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis: implications for vector control. Med Vet Entomol. 2006;20:425–37.
Google Scholar
Bekele D, Belyhun Y, Petros B, Deressa W. Assessment of the effect of insecticide-treated nets and indoor residual spraying for malaria control in three rural kebeles of Adami Tulu District, South Central Ethiopia. Malar J. 2012;11:127.
Google Scholar
Adugna F, Wale M, Nibret E. Review of Anopheles mosquito species, abundance, and distribution in Ethiopia. J Trop Med. 2021;2021:6726622.
Google Scholar
Krafsur ES. Anopheles nili as a vector of malaria in a lowland region of Ethiopia. Bull World Health Organ. 1970;42:466.
Google Scholar
Aschale Y, Ayehu A, Worku L, Addisu A, Zeleke AJ, Bayih AG, et al. Anopheles gambiae s.l (Diptera: Culicidae) seasonal abundance, abdominal status and parity rates in Metema-Armachiho lowland, Northwest Ethiopia. BMC Infect Dis. 2020;20:333.
Google Scholar
Adugna T, Getu E, Yewhelew D. Parous rate and longevity of anophelines mosquitoes in Bure district, northwestern Ethiopia. PLoS ONE. 2022;17:e0263295.
Google Scholar
Adugna T, Getu E, Yewhalaw D. Species diversity and distribution of Anopheles mosquitoes in Bure district, Northwestern Ethiopia. Heliyon. 2020;6:e05063.
Google Scholar
Balkew M, Gebre-Michael T, Hailu A. Insecticide susceptibility level of Anopheles arabiensis in two agro-development localities in eastern Ethiopia. Parassitologia. 2003;45:1–3.
Google Scholar
Carter TE, Yared S, Hansel S, Lopez K, Janies D. Sequence-based identification of Anopheles species in eastern Ethiopia. Malar J. 2019;18:135.
Google Scholar
Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Dinh Trung H, et al. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J. 2011;10:195.
Google Scholar
Lochouarn L, Fontenille D. ELISA detection of malaria sporozoites: false positive results in Anopheles gambiae s.l. associated with bovine bloodmeals. Trans R Soc Trop Med Hyg. 1999;93:101–2.
Google Scholar
Somboon P, Morakote N, Koottathep S, Trisanarom U. Detection of sporozoites of Plasmodium vivax and Plasmodium falciparum in mosquitoes by ELISA: false positivity associated with bovine and swine blood. Trans R Soc Trop Med Hyg. 1993;87:322–4.
Google Scholar
Hendershot AL, Esayas E, Sutcliffe AC, Irish SR, Gadisa E, Tadesse FG, et al. A comparison of PCR and ELISA methods to detect different stages of Plasmodium vivax in Anopheles arabiensis. Parasit Vectors. 2021;14:473.
Google Scholar
Echeverry DF, Deason NA, Makuru V, Davidson J, Xiao H, Niedbalski J, et al. Fast and robust single PCR for Plasmodium sporozoite detection in mosquitoes using the cytochrome oxidase I gene. Malar J. 2017;16:230.
Google Scholar
Kumpitak C, Nguitragool W, Cui L, Sattabongkot J, Bantuchai S. Detection of Plasmodium sporozoites in Anopheles mosquitoes using an enzyme-linked immunosorbent assay. J Vis Exp. 2021;30:e63158.
Alemu A, Fuehrer HP, Getnet G, Tessema B, Noedl H. Plasmodium ovale curtisi and Plasmodium ovale wallikeri in North-West Ethiopia. Malar J. 2013;12:346.
Google Scholar
Assefa A, Ahmed AA, Deressa W, Wilson GG, Kebede A, Mohammed H, et al. Assessment of subpatent Plasmodium infection in northwestern Ethiopia. Malar J. 2020;19:108.
Google Scholar