Chromosome-scale genome of the human blood fluke Schistosoma mekongi and its implications for public health – Infectious Diseases of Poverty

  • Barnett R. Schistosomiasis. (1474–547X (Electronic)).

  • Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect Dis. 2006;6(7):411–25.

    Article 
    PubMed 

    Google Scholar 

  • Uthailak N, Adisakwattana P, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, et al. Discovery of Schistosoma mekongi circulating proteins and antigens in infected mouse sera. PLoS ONE. 2022;17(10):e0275992.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin D, Zeng X, Sanogo B, He P, Xiang S, Du S, et al. The potential risk of Schistosoma mansoni transmission by the invasive freshwater snail Biomphalaria straminea in South China. PLoS Negl Trop Dis. 2020;14(6):e0008310.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barsoum RS, Esmat G, El-Baz T. Human schistosomiasis: clinical perspective: review. J Adv Res. 2013;4(5):433–44.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gordon CA, Kurscheid J, Williams GM, Clements ACA, Li Y, Zhou XN, et al. Asian schistosomiasis: current status and prospects for control leading to elimination. Trop Med Infect Dis. 2019;4(1):40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attwood SW, Liu L, Huo GN. Population genetic structure and geographical variation in Neotricula aperta (Gastropoda: Pomatiopsidae), the snail intermediate host of Schistosoma mekongi (Digenea: Schistosomatidae). PLoS Negl Trop Dis. 2019;13(1):e0007061.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attwood SW, Fatih FA, Upatham ES. DNA-sequence variation among Schistosoma mekongi populations and related taxa; phylogeography and the current distribution of Asian schistosomiasis. PLoS Negl Trop Dis. 2008;2(3):e200.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phuphisut O, Ajawatanawong P, Limpanont Y, Reamtong O, Nuamtanong S, Ampawong S, et al. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit Vectors. 2018;11(1):504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gray DJ, Ross AG, Li YS, McManus DP. Diagnosis and management of schistosomiasis. BMJ. 2011;342:d2651.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McManus DP, Dunne DW, Sacko M, Utzinger J, Vennervald BJ, Zhou XN. Schistosomiasis. Nat Rev Dis Primers. 2018. https://doi.org/10.1038/s41572-018-0013-8.

    Article 
    PubMed 

    Google Scholar 

  • Hamid HKS. Schistosoma japonicum-associated colorectal cancer: a review. Am J Trop Med Hyg. 2019;100(3):501–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. Lancet. 2014;383(9936):2253–64.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schistosoma japonicum Genome S, Functional Analysis C. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature. 2009;460(7253):345–51

  • Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, da Costa JMC. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/AAC.02582-16.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tebeje BM, Harvie M, You H, Loukas A, McManus DP. Schistosomiasis vaccines: where do we stand? Parasit Vectors. 2016. https://doi.org/10.1186/s13071-016-1799-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke Schistosoma mansoni. Nature. 2009;460(7253):352–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. Whole-genome sequence of Schistosoma haematobium. Nat Genet. 2012;44(2):221–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al. High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing. Gigascience. 2019. https://doi.org/10.1093/gigascience/giz108.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stroehlein AJ, Korhonen PK, Lee VV, Ralph SA, Mentink-Kane M, You H, et al. Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation. PLoS Pathog. 2022;18(2):e1010288.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo F, Yin M, Mo X, Sun C, Wu Q, Zhu B, et al. An improved genome assembly of the fluke Schistosoma japonicum. PLoS Negl Trop Dis. 2019;13(8):e0007612.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu X, Wang Y, Wang C, Guo G, Yu X, Dai Y, et al. Chromosome-level genome assembly defines female-biased genes associated with sex determination and differentiation in the human blood fluke Schistosoma japonicum. Mol Ecol Resour. 2023;23(1):205–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ohmae H, Sinuon M, Kirinoki M, Matsumoto J, Chigusa Y, Socheat D, et al. Schistosomiasis mekongi: from discovery to control. Parasitol Int. 2004;53(2):135–42.

    Article 
    PubMed 

    Google Scholar 

  • Chai JY, Jung BK. Epidemiology of trematode infections: an update. Adv Exp Med Biol. 2019;1154:359–409.

    Article 
    PubMed 

    Google Scholar 

  • Melo FL, Gomes AL, Barbosa CS, Werkhauser RP, Abath FG. Development of molecular approaches for the identification of transmission sites of schistosomiasis. Trans R Soc Trop Med Hyg. 2006;100(11):1049–55.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9(11):e112963.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adey A, Kitzman JO, Burton JN, Daza R, Kumar A, Christiansen L, et al. In vitro, long-range sequence information for de novo genome assembly via transposase contiguity. Genome Res. 2014;24(12):2041–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–25.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinf. 2009;10:421.

    Article 

    Google Scholar 

  • Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Laetsch D, Blaxter M. BlobTools: interrogation of genome assemblies [version 1; peer review: 2 approved with reservations]. F1000Research. 2017;6:1287.

    Article 

    Google Scholar 

  • Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol Biol Evol. 2021;38(10):4647–54.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017;45(W1):W6–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47(W1):W59–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCarthy EM, McDonald JF. LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics. 2003;19(3):362–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16(6):276–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mulder N, Apweiler R. InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol. 2007;396:59–70.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–80.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar RC, Myers EW. PILER: identification and classification of genomic repeats. Bioinformatics. 2005;21(Suppl 1):i152–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Price AL, Jones NC, Pevzner PA. De novo identification of repeat families in large genomes. Bioinformatics. 2005;21(Suppl 1):i351–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011. https://doi.org/10.1038/nbt.1883.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, Hannick LI, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows user-defined constraints. Nucleic Acids. 2005. https://doi.org/10.1093/nar/gki458.

    Article 

    Google Scholar 

  • Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol. 1997;268(1):78–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guigo R, Knudsen S, Drake N, Smith T. Prediction of gene structure. J Mol Biol. 1992;226(1):141–57.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H. Interpolated Markov models for eukaryotic gene finding. Genomics. 1999;59(1):24–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Korf I. Gene finding in novel genomes. BMC Bioinf. 2004;5:59.

    Article 

    Google Scholar 

  • Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998;62(5):1198–211.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 2008;9(1):R7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nielsen H. Predicting secretory proteins with SignalP. Methods Mol Biol. 2017;1611:59–73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46(D1):D624–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–64.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009;25(10):1335–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris RS. Improved pairwise alignment of genomic DNA. State College: The Pennsylvania State University; 2007.

    Google Scholar 

  • Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004;14(4):708–15.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15(8):1034–50.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Birney E, Clamp M, Durbin R. GeneWise and genomewise. Genome Res. 2004;14(5):988–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf. 2011;12(1):323.

    Article 
    CAS 

    Google Scholar 

  • Feng J, Meyer CA, Wang Q, Liu JS, Shirley Liu X, Zhang Y. GFOLD: a generalized fold change for ranking differentially expressed genes from RNA-seq data. Bioinformatics. 2012;28(21):2782–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crellen T, Allan F, David S, Durrant C, Huckvale T, Holroyd N, et al. Whole genome resequencing of the human parasite Schistosoma mansoni reveals population history and effects of selection. Sci Rep. 2016;6:20954.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walker AJ, Ressurreicao M, Rothermel R. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics. Front Genet. 2014;5:229.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morel M, Vanderstraete M, Hahnel S, Grevelding CG, Dissous C. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy. Front Genet. 2014;5:238.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hambrook JR, Kabore AL, Pila EA, Hanington PC. A metalloprotease produced by larval Schistosoma mansoni facilitates infection establishment and maintenance in the snail host by interfering with immune cell function. PLoS Pathog. 2018;14(10):e1007393.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • El Ridi R, Tallima H, Selim S, Donnelly S, Cotton S, Gonzales Santana B, et al. Cysteine peptidases as schistosomiasis vaccines with inbuilt adjuvanticity. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0085401.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • International Helminth Genomes Consortium. Comparative genomics of the major parasitic worms. Nat Genet. 2019;51(1):163–74.

    Article 
    CAS 

    Google Scholar 

  • McKerrow JH, Caffrey C, Kelly B, Loke P, Sajid M. Proteases in parasitic diseases. Annu Rev Pathol. 2006;1:497–536.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdulla MH, Lim KC, Sajid M, McKerrow JH, Caffrey CR. Schistosomiasis mansoni: novel chemotherapy using a cysteine protease inhibitor. PLoS Med. 2007;4(1):e14.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chakrabarti A, Narayana C, Joshi N, Garg S, Garg LC, Ranganathan A, et al. Metalloprotease Gp63-targeting novel glycoside exhibits potential antileishmanial activity. Front Cell Infect Microbiol. 2022;12:803048.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dvorak J, Mashiyama ST, Sajid M, Braschi S, Delcroix M, Schneider EL, et al. SmCL3, a gastrodermal cysteine protease of the human blood fluke Schistosoma mansoni. PLoS Negl Trop Dis. 2009;3(6):e449.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dietzel J, Hirzmann J, Preis D, Symmons P, Kunz W. Ferritins of Schistosoma mansoni: sequence comparison and expression in female and male worms. Mol Biochem Parasitol. 1992;50(2):245–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalton JP, Clough KA, Jones MK, Brindley PJ. Characterization of the cathepsin-like cysteine proteinases of Schistosoma mansoni. Infect Immun. 1996;64(4):1328–34.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smooker PM, Jayaraj R, Pike RN, Spithill TW. Cathepsin B proteases of flukes: the key to facilitating parasite control? Trends Parasitol. 2010;26(10):506–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng X, Zhu L, Qin Z, Mo X, Hao Y, Jiang Y, et al. Temporal transcriptome change of Oncomelania hupensis revealed by Schistosoma japonicum invasion. Cell Biosci. 2020;10:58.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klopfenstein DV, Zhang L, Pedersen BS, Ramirez F, Warwick Vesztrocy A, Naldi A, et al. GOATOOLS: a Python library for gene ontology analyses. Sci Rep. 2018;8(1):10872.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brookfield JF. Host-parasite relationships in the genome. BMC Biol. 2011;9:67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebert D, Fields PD. Host-parasite co-evolution and its genomic signature. Nat Rev Genet. 2020;21(12):754–68.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao QP, Gao Q, Zhang Y, Li YW, Huang WL, Tang CL, et al. Identification of Toll-like receptor family members in Oncomelania hupensis and their role in defense against Schistosoma japonicum. Acta Trop. 2018. https://doi.org/10.1016/j.actatropica.2018.01.008.

    Article 
    PubMed 

    Google Scholar 

  • Fenwick A, Utzinger J. Helminthic diseases: schistosomiasis. In: Heggenhougen HK, editor. International encyclopedia of public health. Oxford: Academic Press; 2008. p. 351–61.

    Chapter 

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *