Zhang H, Chang R. Effects of exercise after percutaneous coronary intervention on cardiac function and cardiovascular adverse events in patients with coronary heart disease: systematic review and meta-analysis. J Sports Sci Med. 2019;18:213–22.
Google Scholar
Sun LY, Tu JV, Bader Eddeen A, Liu PR. Prevalence and long-term survival after coronary artery bypass grafting in women and men with heart failure and preserved versus reduced ejection fraction. J Am Heart Assoc. 2018. https://doi.org/10.1161/jaha.118.008902.
Google Scholar
Cauwenberghs N, Knez J, Thijs L, Haddad F, Vanassche T, Yang WY, et al. Relation of insulin resistance to longitudinal changes in left ventricular structure and function in a general population. J Am Heart Assoc. 2018. https://doi.org/10.1161/jaha.117.008315.
Google Scholar
Banerjee D, Biggs ML, Mercer L, Mukamal K, Kaplan R, Barzilay J, et al. Insulin resistance and risk of incident heart failure: cardiovascular Health Study. Circ Heart Fail. 2013;6:364–70. https://doi.org/10.1161/circheartfailure.112.000022.
Google Scholar
Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K. Uncoupling proteins in human heart. Lancet. 2004;364:1786–8. https://doi.org/10.1016/s0140-6736(04)17402-3.
Google Scholar
Shah RV, Abbasi SA, Heydari B, Rickers C, Jacobs DR Jr, Wang L, et al. Insulin resistance, subclinical left ventricular remodeling, and the obesity paradox: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2013;61:1698–706. https://doi.org/10.1016/j.jacc.2013.01.053.
Google Scholar
Huang R, Wang Z, Chen J, Bao X, Xu N, Guo S, et al. Prognostic value of triglyceride glucose (TyG) index in patients with acute decompensated heart failure. Cardiovasc Diabetol. 2022;21:88. https://doi.org/10.1186/s12933-022-01507-7.
Google Scholar
Zheng L, Li B, Lin S, Chen L, Li H. Role and mechanism of cardiac insulin resistance in occurrence of heart failure caused by myocardial hypertrophy. Aging. 2019;11:6584–90. https://doi.org/10.18632/aging.102212.
Google Scholar
Riehle C, Abel ED. Insulin signaling and heart failure. Circ Res. 2016;118:1151–69. https://doi.org/10.1161/circresaha.116.306206.
Google Scholar
Castillo Costa Y, Mauro V, Fairman E, Charask A, Olguín L, Cáceres L, et al. Prognostic value of insulin resistance assessed by HOMA-IR in non-diabetic patients with decompensated heart failure. Curr Probl Cardiol. 2022;48:101112. https://doi.org/10.1016/j.cpcardiol.2022.101112.
Google Scholar
Doehner W, Rauchhaus M, Ponikowski P, Godsland IF, von Haehling S, Okonko DO, et al. Impaired insulin sensitivity as an independent risk factor for mortality in patients with stable chronic heart failure. J Am Coll Cardiol. 2005;46:1019–26. https://doi.org/10.1016/j.jacc.2005.02.093.
Google Scholar
Demmer RT, Allison MA, Cai J, Kaplan RC, Desai AA, Hurwitz BE, et al. Association of impaired glucose regulation and insulin resistance with cardiac structure and function: results from ECHO-SOL (Echocardiographic Study of Latinos). Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/circimaging.116.005032.
Google Scholar
Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95:3347–51. https://doi.org/10.1210/jc.2010-0288.
Google Scholar
Minh HV, Tien HA, Sinh CT, Thang DC, Chen CH, Tay JC, et al. Assessment of preferred methods to measure insulin resistance in Asian patients with hypertension. J Clin Hypertens. 2021;23:529–37. https://doi.org/10.1111/jch.14155.
Google Scholar
Tao LC, Xu JN, Wang TT, Hua F, Li JJ. Triglyceride-glucose index as a marker in cardiovascular diseases: landscape and limitations. Cardiovasc Diabetol. 2022;21:68. https://doi.org/10.1186/s12933-022-01511-x.
Google Scholar
Luo E, Wang D, Yan G, Qiao Y, Liu B, Hou J, et al. High triglyceride-glucose index is associated with poor prognosis in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Cardiovasc Diabetol. 2019;18:150. https://doi.org/10.1186/s12933-019-0957-3.
Google Scholar
Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6:299–304. https://doi.org/10.1089/met.2008.0034.
Google Scholar
Liao LP, Yang Y, Wu Y, Li W. Correlation analysis of the triglyceride glucose index and heart failure with preserved ejection fraction in essential hypertensive patients. Clin Cardiol. 2022;45:936–42. https://doi.org/10.1002/clc.23881.
Google Scholar
Huang R, Lin Y, Ye X, Zhong X, Xie P, Li M, et al. Triglyceride-glucose index in the development of heart failure and left ventricular dysfunction: analysis of the ARIC study. Eur J Prev Cardiol. 2022. https://doi.org/10.1093/eurjpc/zwac058.
Google Scholar
Chiu TH, Tsai HJ, Chiou HC, Wu PY, Huang JC, Chen SC. A high triglyceride-glucose index is associated with left ventricular dysfunction and atherosclerosis. Int J Med Sci. 2021;18:1051–7. https://doi.org/10.7150/ijms.53920.
Google Scholar
Sanlialp SC, Nar G, Gunver MG. Elevated triglyceride glucose index is related to the presence of heart failure. Journal of Istanbul Faculty of Medicine-Istanbul Tip Fakultesi Dergisi. 2021. https://doi.org/10.26650/iuitfd.2021.898541.
Google Scholar
Peled Y, Ram E, Klempfner R, Segev S, Maor E. Triglyceride-glucose index as a potential marker for the development of heart failure in healthy adults. J Heart Lung Transpl. 2022;41:S439–S439.
Scatteia A, Baritussio A, Bucciarelli-Ducci C. Strain imaging using cardiac magnetic resonance. Heart Fail Rev. 2017;22:465–76. https://doi.org/10.1007/s10741-017-9621-8.
Google Scholar
Ferrari F, Menegazzo WR. Global longitudinal strain or measurement of ejection fraction: which method is better in stratifying patients with heart failure? Arq Bras Cardiol. 2019;113:195–6. https://doi.org/10.5935/abc.20190151.
Google Scholar
Konstam MA, Abboud FM. Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation. 2017;135:717–9. https://doi.org/10.1161/circulationaha.116.025795.
Google Scholar
Jung IH, Park JH, Lee JA, Kim GS, Lee HY, Byun YS, et al. Left ventricular global longitudinal strain as a predictor for left ventricular reverse remodeling in dilated cardiomyopathy. J Cardiovasc Imaging. 2020;28:137–49. https://doi.org/10.4250/jcvi.2019.0111.
Google Scholar
Mancuso FJN. Real-time three-dimensional echocardiography and myocardial strain: ready for use in clinical practice. Arq Bras Cardiol. 2019;113:946–7. https://doi.org/10.5935/abc.20190179.
Google Scholar
Chitiboi T, Axel L. Magnetic resonance imaging of myocardial strain: a review of current approaches. J Magn Reson Imaging. 2017;46:1263–80. https://doi.org/10.1002/jmri.25718.
Google Scholar
Park JJ, Mebazaa A, Hwang IC, Park JB, Park JH, Cho GY. Phenotyping heart failure according to the longitudinal ejection fraction change: myocardial strain, predictors, and outcomes. J Am Heart Assoc. 2020;9: e015009. https://doi.org/10.1161/jaha.119.015009.
Google Scholar
Smith SC Jr, Feldman TE, Hirshfeld JW Jr, Jacobs AK, Kern MJ, King SB 3rd, et al. ACC/AHA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention–summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). Circulation. 2006;113:156–75. https://doi.org/10.1161/circulationaha.105.170815.
Google Scholar
Chalmers J, MacMahon S, Mancia G, Whitworth J, Beilin L, Hansson L, et al. World Health Organization-International Society of Hypertension Guidelines for the management of hypertension. Guidelines sub-committee of the World Health Organization. Clin Exp Hypertens. 1999;21:1009–60. https://doi.org/10.3109/10641969909061028.
Google Scholar
Chan J, Edwards NFA, Khandheria BK, Shiino K, Sabapathy S, Anderson B, et al. A new approach to assess myocardial work by non-invasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2019;20:31–9. https://doi.org/10.1093/ehjci/jey131.
Google Scholar
Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2969–89. https://doi.org/10.1210/jc.2011-3213.
Google Scholar
Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606. https://doi.org/10.1016/s0002-9149(83)80105-2.
Google Scholar
Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr. 2005;18:1440–63. https://doi.org/10.1016/j.echo.2005.10.005.
Google Scholar
Recommendations for Cardiac Chamber Quantification by Echocardiography in Adults: An Update from the American Society of Echocardiography and the European Association of, Cardiovascular Imaging. European heart journal Cardiovascular Imaging. 2016;17(4):412.
Liu Y, Wu M, Xu J, Sha D, Xu B, Kang L. Association between Triglyceride and glycose (TyG) index and subclinical myocardial injury. Nutr Metab Cardiovasc Dis. 2020;30:2072–6. https://doi.org/10.1016/j.numecd.2020.06.019.
Google Scholar
Zeng X, Han D, Zhou H, Xue Y, Wang X, Zhan Q, et al. Triglyceride-glucose index and homeostasis model assessment-insulin resistance in young adulthood and risk of incident congestive heart failure in midlife: the coronary artery risk development in young adults study. Front Cardiovasc Med. 2022;9: 944258. https://doi.org/10.3389/fcvm.2022.944258.
Google Scholar
Li X, Chan JSK, Guan B, Peng S, Wu X, Lu X, et al. Triglyceride-glucose index and the risk of heart failure: evidence from two large cohorts and a Mendelian randomization analysis. Cardiovasc Diabetol. 2022;21:229. https://doi.org/10.1186/s12933-022-01658-7.
Google Scholar
Xu L, Wu M, Chen S, Yang Y, Wang Y, Wu S, et al. Triglyceride-glucose index associates with incident heart failure: a cohort study. Diabetes Metab. 2022;48: 101365. https://doi.org/10.1016/j.diabet.2022.101365.
Google Scholar
Mei K, Ling Q, Yan Z. Correlation analysis of the triglyceride glucose index and heart failure with preserved ejection fraction in essential hypertensive patients. Clin Cardiol. 2022. https://doi.org/10.1002/clc.23944.
Google Scholar
Cetin Sanlialp S, Sanlialp M, Nar G, Malcok A. Triglyceride glucose index reflects the unfavorable changes of left ventricular diastolic functions and structure in uncomplicated newly diagnosed hypertensive patients. Clin Exp Hypertens. 2022;44:215–22. https://doi.org/10.1080/10641963.2021.2018599.
Google Scholar
Wang C, Zhao Z, Deng X, Cai Z, Gu T, Li L, et al. Association of triglyceride-glucose with cardiac hemodynamics in type 2 diabetes. Diab Vasc Dis Res. 2022;19:14791641221083396. https://doi.org/10.1177/14791641221083396.
Google Scholar
Sun QC, Liu J, Meng R, Zhang N, Yao J, Yang F, et al. Association of the triglyceride-glucose index with subclinical left ventricular dysfunction in type 2 diabetes mellitus patients: a retrospective cross-sectional study. J Diabetes Investig. 2023;14:953–60. https://doi.org/10.1111/jdi.14026.
Google Scholar
Chen Y, Fu J, Wang Y, Zhang Y, Shi M, Wang C, et al. Association between triglyceride glucose index and subclinical left ventricular systolic dysfunction in patients with type 2 diabetes. Lipids Health Dis. 2023;22:35. https://doi.org/10.1186/s12944-023-01796-1.
Google Scholar
Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: molecular mechanisms. Heart Fail Clin. 2012;8:609–17. https://doi.org/10.1016/j.hfc.2012.06.005.
Google Scholar
Yang S, Du Y, Liu Z, Zhang R, Lin X, Ouyang Y, et al. Triglyceride-glucose index and extracellular volume fraction in patients with heart failure. Front Cardiovasc Med. 2021;8: 704462. https://doi.org/10.3389/fcvm.2021.704462.
Google Scholar
Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903. https://doi.org/10.1016/j.jacc.2010.11.013.
Google Scholar
Angoorani P, Heshmat R, Ejtahed HS, Motlagh ME, Ziaodini H, Taheri M, et al. Validity of triglyceride-glucose index as an indicator for metabolic syndrome in children and adolescents: the CASPIAN-V study. Eat Weight Disord. 2018;23:877–83. https://doi.org/10.1007/s40519-018-0488-z.
Google Scholar
Li R, Li Q, Cui M, Yin Z, Li L, Zhong T, et al. Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese. J Diabetes Investig. 2018;9:411–8. https://doi.org/10.1111/jdi.12708.
Google Scholar
Gharipour M, Sadeghi M, Nezafati P, Dianatkhah M, Sarrafzadegan N. Cardiovascular disease risk assessment: triglyceride/high-density lipoprotein versus metabolic syndrome criteria. J Res Health Sci. 2019;19: e00442.
Google Scholar
Luiken JJ, Koonen DP, Willems J, Zorzano A, Becker C, Fischer Y, et al. Insulin stimulates long-chain fatty acid utilization by rat cardiac myocytes through cellular redistribution of FAT/CD36. Diabetes. 2002;51:3113–9. https://doi.org/10.2337/diabetes.51.10.3113.
Google Scholar
Wende AR, Abel ED. Lipotoxicity in the heart. Biochim Biophys Acta. 2010;1801:311–9. https://doi.org/10.1016/j.bbalip.2009.09.023.
Google Scholar
van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res. 2011;92:10–8. https://doi.org/10.1093/cvr/cvr212.
Google Scholar
Cai X, Liu X, Sun L, He Y, Zheng S, Zhang Y, et al. Prediabetes and the risk of heart failure: a meta-analysis. Diabetes Obes Metab. 2021;23:1746–53. https://doi.org/10.1111/dom.14388.
Google Scholar
Poornima IG, Parikh P, Shannon RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res. 2006;98:596–605. https://doi.org/10.1161/01.RES.0000207406.94146.c2.
Google Scholar
Mandavia CH, Pulakat L, DeMarco V, Sowers JR. Over-nutrition and metabolic cardiomyopathy. Metabolism. 2012;61:1205–10. https://doi.org/10.1016/j.metabol.2012.02.013.
Google Scholar
Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med. 2012;17:330–41. https://doi.org/10.1177/1358863×12450094.
Google Scholar
Samuelsson AM, Bollano E, Mobini R, Larsson BM, Omerovic E, Fu M, et al. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol. 2006;291:H787-796. https://doi.org/10.1152/ajpheart.00974.2005.
Google Scholar
Pulakat L, DeMarco VG, Ardhanari S, Chockalingam A, Gul R, Whaley-Connell A, et al. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am J Physiol Regul Integr Comp Physiol. 2011;301:R885-895. https://doi.org/10.1152/ajpregu.00316.2011.
Google Scholar
Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care. 2003;26:2433–41. https://doi.org/10.2337/diacare.26.8.2433.
Google Scholar
Candido R, Allen TJ, Lassila M, Cao Z, Thallas V, Cooper ME, et al. Irbesartan but not amlodipine suppresses diabetes-associated atherosclerosis. Circulation. 2004;109:1536–42. https://doi.org/10.1161/01.Cir.0000124061.78478.94.
Google Scholar
Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M, et al. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin-induced diabetes. Life Sci. 2006;79:121–9. https://doi.org/10.1016/j.lfs.2005.12.036.
Google Scholar
Bloom MW, Greenberg B, Jaarsma T, Januzzi JL, Lam CSP, Maggioni AP, et al. Heart failure with reduced ejection fraction. Nat Rev Dis Primers. 2017;3:17058. https://doi.org/10.1038/nrdp.2017.58.
Google Scholar
Zheng Y, Li C, Yang J, Seery S, Qi Y, Wang W, et al. Atherogenic index of plasma for non-diabetic, coronary artery disease patients after percutaneous coronary intervention: a prospective study of the long-term outcomes in China. Cardiovasc Diabetol. 2022;21:29. https://doi.org/10.1186/s12933-022-01459-y.
Google Scholar
Amano T, Matsubara T, Uetani T, Nanki M, Marui N, Kato M, et al. Abnormal glucose regulation is associated with lipid-rich coronary plaque: relationship to insulin resistance. JACC Cardiovasc Imaging. 2008;1:39–45. https://doi.org/10.1016/j.jcmg.2007.09.003.
Google Scholar
Esan O, Wierzbicki AS. Triglycerides and cardiovascular disease. Curr Opin Cardiol. 2021;36:469–77. https://doi.org/10.1097/hco.0000000000000862.
Google Scholar
Bloomgarden ZT. Inflammation and insulin resistance. Diabetes Care. 2003;26:1619–23. https://doi.org/10.2337/diacare.26.5.1619.
Google Scholar
Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res. 2017;113:389–98. https://doi.org/10.1093/cvr/cvx012.
Google Scholar
Sartori M, Ceolotto G, Papparella I, Baritono E, Ciccariello L, Calò L, et al. Effects of angiotensin II and insulin on ERK1/2 activation in fibroblasts from hypertensive patients. Am J Hypertens. 2004;17:604–10. https://doi.org/10.1016/j.amjhyper.2004.02.017.
Google Scholar
Iguchi T, Hasegawa T, Otsuka K, Matsumoto K, Yamazaki T, Nishimura S, et al. Insulin resistance is associated with coronary plaque vulnerability: insight from optical coherence tomography analysis. Eur Heart J Cardiovasc Imaging. 2014;15:284–91. https://doi.org/10.1093/ehjci/jet158.
Google Scholar
Janus A, Szahidewicz-Krupska E, Mazur G, Doroszko A. Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators Inflamm. 2016;2016:3634948. https://doi.org/10.1155/2016/3634948.
Google Scholar
Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51:93–102. https://doi.org/10.1016/j.jacc.2007.10.021.
Google Scholar
Zou S, Xu Y. Association of the triglyceride-glucose index and major adverse cardiac and cerebrovascular events in female patients undergoing percutaneous coronary intervention with drug-eluting stents: a retrospective study. Diabetes Res Clin Pract. 2021;181: 109073. https://doi.org/10.1016/j.diabres.2021.109073.
Google Scholar
Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63:453–61. https://doi.org/10.1007/s00125-019-05040-3.
Google Scholar
Banke NH, Yan L, Pound KM, Dhar S, Reinhardt H, De Lorenzo MS, et al. Sexual dimorphism in cardiac triacylglyceride dynamics in mice on long term caloric restriction. J Mol Cell Cardiol. 2012;52:733–40. https://doi.org/10.1016/j.yjmcc.2011.11.014.
Google Scholar
Devanathan S, Whitehead TD, Fettig N, Gropler RJ, Nemanich S, Shoghi KI. Sexual dimorphism in myocardial acylcarnitine and triglyceride metabolism. Biol Sex Differ. 2016;7:25. https://doi.org/10.1186/s13293-016-0077-7.
Google Scholar